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Introduction

I The discrete logarithm problem (DLP) and integer
factorization are the most widely used algorithmic problems for
public key cryptography. However, they are solved in
polynomial time with a quantum algorithm.

I Shor’s quantum algorithms rely on the solution of the Hidden
Subgroup Problem for finite abelian groups.

I Apart from lattice-based, multivariate, code-based, and
isogeny-based cryptography, it has been proposed recently to
use nonabelian group theoretic computational problems.
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Background: Nonabelian Group-based Cryptography

Definition (Discrete Logarithm Problem (DLP))

Given g , h ∈ G with h ∈ 〈g〉, find n ∈ Z such that h = gn.

Definition (Conjugacy Search Problem (CSP))

Given g , h ∈ G , find an element x of G such that h = x−1gx , given
that it exists. We adopt the notation g x := x−1gx .

I Anshel, Anshel, and Goldfeld, 1999 and Ko et al., 2000, built
the first protocols based on the CSP in braid groups.

I Several attacks (Hofheinz and Steinwandt, 2002), (Myasnikov,
Shpilrain, and Ushakov, 2006) show that braid groups are not
suitable platforms. Proposed alternatives: polycyclic groups,
p-groups, Thompson groups, matrix groups.
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Motivation

I For linear platform groups (i.e. those that embed faithfully
into a matrix group over a field), several polynomial time
attacks exist (Kreuzer, Myasnikov, and Ushakov, 2014),
(Myasnikov and Roman’kov, 2015), (Tsaban, 2015), (Ben-Zvi,
Kalka, and Tsaban, 2018).

I Often impractical to implement for standard parameter values.

I Computation of an efficient linear representation may pose a
serious roadblock for an adversary.

I Protocol-specific and focus on retrieving the private shared key
without solving the CSP

I So far, the true difficulty of the CSP in different platforms has
not been sufficiently investigated.
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Motivation

Definition (A-restricted CSP)

Given a subgroup A ≤ G and elements g and h of a group G , find
an element x ∈ A such that h = x−1gx , given that it exists.

We are specifically interested in the case where A is cyclic.

I In Ko-Lee, commutativity of conjugators is needed. Interesting
abelian subgroups of several proposed platforms are cyclic.

I In AAG, the amount of information the adversary has is
"proportional" to the number of generators of A.

I Case A cyclic is most basic, reductions to it may be possible
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Polycyclic groups

I Suggested as platforms for CSP in (Eick and Kahrobaei, 2004).
I There is evidence of the ineffectiveness of length-based attacks

and other heuristic methods for braid groups.

Definition (Polycyclic Group)

A polycyclic group is a group G with a subnormal series
G = G1 > G2 > . . . > Gn+1 = 1 with cyclic quotient Gi/Gi+1.

G = 〈a1, a2, . . . , an |ami
i = wii , i ∈ I ,

aaij = wij , 1 ≤ i < j ≤ n,

a
a−1
i

j = w−ij , 1 ≤ i < j ≤ n, i 6∈ I 〉,

for some I ⊆ {1, 2, . . . , n}, where wij = a
l(i ,j ,|i |+1)
|i |+1 . . . a

l(i ,j ,n)
n , with

l(i , j , k) ∈ Z, and 0 ≤ l(i , j , k) < mk if k ∈ I .
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Polycyclic Groups with two generators

In the case n = 2, we the group presentation

〈x1, x2 | xC1 = xE2 , x
x1
2 = xL2 , x

x1−1

2 = xD2 〉

Here, collection, multiplication, conjugation can be performed with
a single application of a formula.

Lemma 1

The conjugated word (xc1 x
d
2 )
−1(xa1x

b
2 )(x

c
1 x

d
2 ) = xg1 x

h
2 with g = a,

h =


−dLa + bLc + d ; if c , a ≥ 0
−dLa + bD−c + d ; if c < 0, a ≥ 0
−dD−a + bLc + d ; if c ≥ 0, a < 0
−dD−a + bD−c + d ; if c , a < 0
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CSP in 2-Polycyclic Groups

Theorem 1
If N2 = ord(x2) is finite, the CSP has a polynomial time solution.

Theorem 2
If N2 = ord(x2) is finite, the 〈x1〉-restricted CSP in G2 reduces to a
DLP. Further, the elements can be chosen so that it is exactly
equivalent to a DLP in (Z/N2Z)∗.

If N2 =∞, the CSP reduces to the Diophantine integer equation
f = −dLa+bLc +d . The 〈x1〉-restricted CSP f = bLc here is easily
solved by taking the real number base-L logarithm of f /b ∈ Z.
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CSP in a finite (n + 1)-PC group; n generators commute

G = 〈s, t1, . . . , tn | tθii = 1, ti tj = tj ti , ti
s = t

a
(1)
i

1 . . . t
a
(n)
i

n , 1 ≤ i , j ≤ n〉

Representing elements of T as column vectors (r1 . . . , rn), we can
describe the conjugation action of s on T by the map

Zo1 × Zo2 × . . .× Zon → Zo1 × Zo2 × . . .× Zon

(r1, . . . , rn)→


a
(1)
1 . . . a

(n)
1

a
(1)
2 . . . a

(n)
2

... · · ·
...

a
(1)
n . . . a

(n)
n

 ·

r1
r2
...
rn


The 〈s〉-restricted CSP constitutes recovering N from the Nth

power of the above matrix.
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Matrix Groups

I The DLP in GLn(Fq) was studied in (Menezes and Wu, 1997)
and (Freeman, 2004) and shown to be no more difficult than
the DLP over a small extension of Fq.

I Most known nonabelian platform groups are linear. If a faithful
representation and its inverse can efficiently be computed, the
security of the system depends on that of the matrix CSP
rather than that in the original platform.

I Let X ∈ Matn(Fq), Z ∈ GLn(Fq) and Y = Z−rXZ r be public
matrices. The 〈Z 〉-restricted CSP comprises finding r ∈ Z.
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〈Z 〉-restricted CSP in GLn(Fq)

There is an extension Fqk of Fq and a unique matrix P ∈ GLn(Fqk ),
both computable in polynomial time (Menezes and Wu, 1997)),
such that JZ = PZP−1, where JZ is the Jordan Normal form of Z .

Define M := PXP−1, N := PYP−1, θZ := ordGLn(Fq)(Z ).

Clearly, Z−rXZ r = Y ⇐⇒ J−rZ MJ rZ = N.

Theorem 3

If JZ is diagonal then the retrieval of r (mod θZ ) reduces to solving
at most n2 DLPs over Fqk .
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〈Z 〉-restricted CSP in GLn(Fq)

Proposition 1

The value of r ′ := r (mod p) can be computed in polynomial time.

Proposition 2

Computing r (mod lcm
1≤i≤s

ord(λi )) reduces in polynomial time to

solving at most s2 DLPs in Fqk .

Theorem 4

Let JZ be non-diagonal, and composed of s Jordan blocks. Then,
the computation of r is polynomial time reducible to a set of s2

DLPs over Fqk .
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p–groups

I A p-group is a finite group with order a power of a prime p.

I Several p-groups are constructed by combining smaller
p-groups by taking direct, semidirect and central products

I A p-group G is called extraspecial if its center Z (G ) is cyclic
of order p, and the quotient G/Z (G ) is a non-trivial
elementary abelian p-group.

I Every extraspecial p-group has order p1+2n and is a central
product of n extraspecial groups of order p3.
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Definition
A group G is said to be a central product of its subgroups H and
K if every element g ∈ G can be written as hk , with h ∈ H, k ∈ K
(i.e. G = HK ), and we have hk = kh ∀ h ∈ H, k ∈ K .

Definition
A finite group G is efficiently C -decomposable if for any elements
h, k , x , y ∈ G with hCx ∩ kCy 6= ∅, an element of hCx ∩ kCy can be
found in polynomial time. Here Cx := {g−1xg | g ∈ G}.

Theorem 5
Let G be efficiently C -decomposable and H,K ≤ G be such that
G = HK is a central product. Then, solving the CSP in G is
polynomial time reducible to solving 2 separate CSPs in H and K .
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Extraspecial p-groups of order p3

In extraspecial p-groups of order p3, it is always possible to reduce
the CSP to a set of linear modular equations.

M(p) = 〈x , y | xp2
= 1, yp = 1, yxy−1 = x1+p〉

N(p) = 〈x , y , z | xp = yp = zp = 1, xy = yx , yz = zy , zxz−1 = xy−1〉.

Theorem 6

For g = xayb and g ′ = xAyB in M(p), an element h = x iy j

satisfies g ′ = h−1gh if and only if (A− a)/p = (aj − ib) mod p.
For g = xaybzc and g ′ = xAyBzC in N(p) an element h = x iy jzk

satisfies g ′ = h−1gh if and only if B − b = −ka+ ic mod p.

Theorem 7
Any extraspecial p-group G is efficiently C -decomposable. Thus,
the CSP in G has a polynomial time solution.
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Applications

I Protocol in (Sin and Chen, 2019) based on a "decomposition
problem" in (polycyclic) generalized quaternion groups Q2n is
broken by collection and solving linear equations (mod N).

Q2n = 〈x , y | xN = 1, y2 = xN/2, yx = x−1y ,N = 2n−1〉.

I Protocol in (Valluri and Narayan, 2016) is based on the a
〈Z 〉-restricted CSP over quaternions mod p, Hp.

Hp = {a1 + a2i + a3j + a4k | ai ∈ Zp}.

There is an explicit isomorphism with efficiently computable
inverse Hp

∼= Mat2(Z/pZ) (Tsopanidis, 2020).
I "Subgroup CSP" in (Gu and Zheng, 2014) corresponds exactly

to the A-restricted CSP for A cyclic. Suggested platforms are
GLn(Fq), a subgroup of it, and a braid group.
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Thank you!
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