
Imperfect Forward Secrecy:
How Diffie-Hellman Fails in Practice

Presentation by Simran Tinani

Authors: David Adrian, Karthikeyan Bhargavan, Zakir Durumeric, Pierrick Gaudry, Matthew Green, J. Alex Halderman, Nadia Heninger,
Drew Springall, Emmanuel Thomé, Luke Valenta, Benjamin VanderSloot, Eric Wustrow, Santiago Zanella-Béguelink Paul Zimmermann

Overview

• Logjam: Man-in-the middle downgrade attack which manipulates the TLS
handshake (versions 1.2 and older) to use "export" parameters and then
impersonate the server to finish it

• Exploits a server’s willingness to accept a connection with 512-bit Diffie-
Hellman keys

• Once the connection is downgraded, the attacker computes the server’s secret
key, and hence also the master secret and session keys, and can then
impersonate the server completely by forging the Finished message in the
handshake

• The server secret key is broken by computing 512-bit discrete logs using the
Number Field Sieve

• The authors demonstrated compromise of a large number of websites

• The massive scale of the attack was caused by widespread reuse of a small set of
DHE parameters across the internet and the ability to use precomputed values
for the cryptanalysis

Contents of the talk

1. Conceptual Walkthrough
a. Diffie-Hellman and discrete log

b. Number field sieve

c. The TLS Handshake

d. Man-in-the-middle attacks

2. Logjam attack: working, time costs, consequences

3. State-level threats to 1024-bit DH, potential consequences

4. Author recommendations

5. Mitigations in TLS 1.3

1. Conceptual Walkthrough
a. Diffie-Hellman and the discrete log problem

b. Number field sieve

c. Export grade cryptography

d. The TLS Handshake

e. Man-in-the-middle attacks

2. Logjam attack: working, time costs, consequences

3. State-level threats to 1024-bit DH, potential consequences

4. Mitigation: Author recommendations and in TLS 1.3

Diffie-Hellman Key Exchange

Let p be a large prime.

1. Alice and Bob agree on a large prime p and an integer g with large prime
order modulo p.

2. Alice chooses a secret integer a, computes A = ga (mod p). She sends A to
Bob. Her secret key is a, her public key is A.

3. Bob chooses a secret integer b and computes B = gb (mod p). He sends B to
Alice. His secret key is b, his public key is B.

4. Alice computes her shared secret key, KA = Ba (mod p).

5. Bob computes his shared secret key, KB = Ab (mod p).

KA=gab=KB is the shared secret key of Alice and Bob

Discrete logarithm problem

• Discrete logarithm problem (DLP): Given group elements g and h=gx,
compute the number x (modulo the order of g).

• Shoup’s theorem: any “generic” algorithm that solves the discrete logarithm
problem in an arbitrary group G of size n must perform at least Ω(n1/2) group
operations (exponential complexity)

• “Generic” means that the algorithm has access to the group structure only via
to two oracles: one for performing group operations and one for testing for
equality in the group.

• In some elliptic curve groups, the generic algorithm is the best we can do

• This is not so for finite field groups, where we can exploit the structure

1. Conceptual Discussion

a. Diffie-Hellman and the discrete log problem

b. Number field sieve

c. Export grade cryptography

d. The TLS Handshake

e. Man-in-the-middle attacks

2. Logjam attack: working, time costs, consequences

3. State-level threats to 1024-bit DH, potential consequences

4. Mitigation: Author recommendations and in TLS 1.3.

Number field sieve (NFS) for DLP

• Instance of a more general method called index calculus

• Solves discrete logarithm problems in finite fields with heuristic
subexponential, superpolynomial complexity

• Approach: Given h=gx (mod p), To compute this logarithm x (mod (p-1)), we first
find discrete logarithms modulo large prime divisors l of p-1, i.e., relations of
the form j = logg h (mod l) and use the Chinese remainder theorem to find the
original logarithm

• The prime factorization of p-1 is typically known in most cryptographic
contexts. If not, can use the factorization version of the NFS to find it, which
runs in the same time as this algorithm

Let h=gx (mod p). We want to calculate the integer x modulo (p-1).

Fix a smoothness bound B.

• Pick integer i at random. Test divisibility of h*gi by all primes below B.
If h*gi (mod p) is B-smooth, keep the relation:

h*gi = p1
e_1 × · · · × pk

e_k (mod p).

• Taking logs with base g gives

x + i = e1logg p1 + · · · + ek loggpk (mod p-1)

• Vary i to obtain multiple such relations, until there are enough linear equations

• Solve the linear system to find x (and the logarithms of all elements of the
factor base that appear in at least one relation) modulo a factor of p-1.

• Combine the solutions of multiple systems to get a solution modulo p-1

Index Calculus

Number field sieve

1. Polynomial Selection: select a suitable rational polynomial f(z) with a fixed degree
defining a number field Q(z)/f(z).

• parallelizes well and is only a small portion of the runtime

2. Sieving: find special pairs of integers that satisfy the polynomial f(z)

• factor integers in batches to find relations of elements whose prime factors
modulo p are B-smooth

• parallelizes well but is computationally expensive

3. Matrix Step: construct a large, sparse matrix consisting of the coefficient vectors of
prime factorizations found. The null space of gives a database of the logs of many
small elements

4. Descent: deduce the discrete log of the target h: re-sieve until we can find a set of
relations that allow us to write the log of h in terms of the logs in the precomputed
database. Three phases of sieving with decreasing prime size. The final phase
reconstructs the target using the log database

Complexity

This is obtained by tuning many parameters, including the degree of f, the
sieving region parameter, and, most importantly, the smoothness bound B

For a group of size n, the complexity is given by

1. Conceptual Discussion
a. Diffie-Hellman and and the discrete log problem

b. Number field sieve

c. Export-grade cryptography

d. The TLS Handshake

2. Logjam attack: working, time costs, consequences

3. State-level threats to 1024-bit DH, potential consequences

4. Mitigation: Author recommendations and in TLS 1.3.

Size of p and export grade cryptography

• As of 2023, |p|=2048 for appropriate “safe” primes p is considered sufficiently
strong

• In the 1990s, the U.S. government did not approve export of cryptographic products
unless the key size was strictly limited, therefore breakable. Attempt to control
foreign countries usage of cryptography

• Cryptographic products were divided into two classes: products with “strong”
cryptography and products with “weak” (exportable) cryptography.

• Weak cryptography: key sizes

• ≤ 56 bits in symmetric algorithms,

• ≤ 512 bits for RSA/Diffie-Hellman moduli

• ≤ 112 bits for elliptic curve keys

Size of p and export grade cryptography

• To comply with 1990s-era U.S. export restrictions on cryptography, SSL 3.0
and TLS 1.0 supported reduced-strength DHE_EXPORT ciphersuites that
were restricted to primes no longer than 512 bits.

• January 2000: restrictions on export regulations dramatically relaxed.

• Many libraries and servers retained support for backwards compatibility.

• Today: all cryptographic products are exportable without a license unless
end-users are foreign governments or “embargoed destinations”. Export to
governments may be approved under a license.

https://upload.wikimedia.org/wikipedia/commons/e/e0/Netscape_Navigator_1.1_for_Macintosh_Install_Disk.jpg

1. Conceptual Discussion
a. Diffie-Hellman and and the discrete log problem

b. Number field sieve

c. Export-grade cryptography

d. Man-in-the-middle attacks

e. The TLS Handshake

2. Logjam attack: working, time costs, consequences

3. State-level threats to 1024-bit DH, potential consequences

4. Mitigation: Author recommendations and in TLS 1.3.

Man-in-the-middle (MITM) attacks

• An attacker intercepts and potentially alters the data exchanged between two
communicating parties without their knowledge.

• The two communicating parties do not suspect that their
communication is being relayed. From their perspective, it appears as if
they are communicating directly with each other.

• For this, the MITM must transmit data between the parties so that the
communication appears as usual

• Common targets are communication channels such as Wi-Fi networks, public
hotspots, and unsecured websites.

• Prevention: the best mitigation technique is mutual authentication and
data encryption, both of which are achieved typically using TLS..

Techniques
1.Packet Sniffing: Attacker intercepts and analyze data packets as they travel across a network.

Tools: Wireshark, tcpdump

2.ARP Spoofing/Poisoning: Address Resolution Protocol (ARP) spoofing involves sending false
ARP messages to link an attacker's MAC address with the IP address of a legitimate party

3.DNS Spoofing: Attackers can manipulate the DNS to redirect users to malicious websites.

4.HTTP Session Hijacking: capturing session cookies, session IDs, or other authentication tokens.

5.SSL Stripping: Forcing a connection to use HTTP instead of HTTPS where a website supports
both

6.Wi-Fi Eavesdropping: Setup of rogue Wi-Fi hotspots with names similar to legitimate networks.

7.Email Hijacking: Compromising email accounts, Ex. by phishing

8.Malicious Proxies: Users unknowingly using the proxy think they are connecting directly to the
intended website.

9.Rogue Devices: physical insertion of a rogue device (Ex. malicious router, switch) into a network
to capture or manipulate data

https://www.thesslstore.com/blog/man-in-the-middle-attack-2/

1. Conceptual Discussion

a. Diffie-Hellman and and the discrete log problem

b. Number field sieve

c. Export-grade cryptography

d. Man-in-the-middle attacks

e. TLS

2. Logjam attack: working, time costs, consequences

3. State-level threats to 1024-bit DH, potential consequences

4. Author recommendations

5. Mitigations in TLS 1.3

TLS Handshake messages

• ClientHello: protocol version, client random cr, optional session id to resume, a list of cipher
suites, list of compression methods, list of extensions

• ServerHello: selected protocol version, server random sr, session id, selected cipher suite,
selected compression method, list of extensions

• Server certificate

• Server key generation and exchange:
• prime p, public key gb, signature(p, g, gb, sr, cr)

• Sever Hello Done

• Client Key generation, exchange: public key ga

• Client Key Calculation: (ms, k1, k2)= kdf(cr, sr, ga, b)

• Server Key Calculation: (ms, k1, k2)= kdf(cr, sr, ga, b)

• Client and Server Handshake Finished messages: To verify that the handshake was not
tampered with, the client and server calculate the verification data: a MAC of the handshake
transcript, and send it with the Finished messages

1. Conceptual Discussion
a. Diffie-Hellman and and the discrete log problem

b. Number field sieve

c. Export-grade cryptography

d. Man-in-the-middle attacks

e. TLS

2. Logjam attack: working, time costs, consequences

3. State-level threats to 1024-bit DH, potential consequences

4. Mitigations: Author recommendations and in TLS 1.3.

Logjam

The attack

• Logjam is reminiscent of the recent FREAK attack, which relied on an
implementation bug in RSA key exchange

• Relies on a protocol flaw in TLS ≤1.2, namely its composition of the ephemeral
Diffie-Hellman ciphersuites DHE and DHE_EXPORT

• Downgrade attack: forcing two participants to use the weakest cipher
supported by both parties. so that the attacker can eventually calculate the key.

• Assumption: only the server can continue the session with the client due to its
knowledge of the secret key b (therefore the ability to calculate the MAC and
decrypt further messages)

The underlying vulnerability

• The structure of the signed ServerKeyExchange message containing a 512-bit
p512 is identical to the message sent during standard DHE ciphersuites, i.e. the
signature of the server does not attest to the negotiated ciphersuite

ServerKeyExchange = [prime p, public key gb, signature(p, g, gb, sr, cr)]

• An active MITM attacker can rewrite the client’s ClientHello to DHE_EXPORT,
remove other ciphersuites, and forward the ServerKeyExchange message to the
client as is

• The client will verify the signature correctly and interpret the export-grade tuple
(p512, g, gb) as valid DHE parameters chosen by the server and proceed with the
handshake

• Note that this is possible because the initial handshake messages are sent over
HTTP (before any encryption or authentication occurs)

Challenges
1. The client and server have different handshake transcripts at the end. The Finished

messages include the MAC of the handshake to verify that nothing was tampered with

Solution: an attacker who can compute b in close to real time can derive the master secret
and connection keys, and therefore can compute a valid MAC of their own version of the
handshake with the client, thereby completing the handshake with the client and
terminating its connection with the server.

2. Computing individual discrete logs in close to real time

Solution:

• perform NFS precomputations in advance for the two most popular 512-bit
primes

• Downgrade the protocol to use 512-bit keys to allows for practical real-time
computation of the secret key using NFS

https://weakdh.org/imperfect-forward-secrecy.pdf

Challenges

3. Delay handshake completion until the discrete log computation has had time to finish

• Non-browser clients. Different TLS clients impose different time limits handshake,
before killing the connection. Command-line clients like curl and git often have long
or no timeouts

• TLS warning alerts. Web browsers have shorter timeouts, we can keep their
connections alive by sending TLS warning alerts: ignored by the browser but reset the
handshake timer.

• Ephemeral key caching. Many TLS servers reuse their DH keys for multiple
negotiations. An attacker can compute the discrete log of gb from one connection and
use it to attack later handshake. The authors found that 17% of IPv4 hosts reused gb

at least once over the course of 20 handshakes, and that 15% only used one value.

• TLS False Start. This extension reduces connection latency by having the client send
early application data (such as an HTTP request) without waiting for the server’s
Finished message to arrive

Time costs: 512-bit cryptanalysis

• NFS Precomputations took a little over 7 days for each prime

• Each resulting database of known logs for the descent occupied about 2.5 GB in
ASCII format

• Computing individual logs in real time took a median of 70 seconds.

• This time varied actually between 34 and 206 seconds.

• The times were about the same for each prime.

Consequences

• Scale of the attack: Since generating primes with special properties can be
computationally burdensome, many implementations use fixed or standardized
Diffie-Hellman parameters

• For both normal and export-grade Diffie-Hellman, the vast majority of servers
use a handful of common groups

• The two 512-bit Diffie-Hellman groups they performed precomputations for
were used by more than 92% of the vulnerable servers

• 82% of the vulnerable servers used a single 512-bit group, allowing
compromised connections to 7% of Alexa Top Million HTTPS sites

• Using the Logjam attack, an attacker with modest resources can hijack
connections to approximately 1.6M SMTP, 429K IMAPS, and 454K POP3S email
servers

Other Weak and Misconfigured Groups
• 512-bit for non-export DHE: 2,631 servers with browser-trusted certificates (and

118 in the Top 1M domains)

• In these instances, active attacks may be unnecessary.

• If a browser negotiates a DHE ciphersuite with one of these servers, a passive
eavesdropper can later compute the discrete log and obtain the TLS session keys
for the connection.

• Non-safe primes: 4,800 of 70,000 distinct primes scanned were not safe, i.e.
(p − 1)/2 was composite.

• not necessarily vulnerable, if g generates a group with at least one sufficiently
large subgroup

• Misconfigured groups: The Digital Signature Algorithm uses primes p such that p-1
has a large prime factor q and g generates only a subgroup of order q. Some servers
used Java’s DSA primes as p but mistakenly used the DSA group order q in the place of
the generator g

1. Conceptual Discussion
a. Diffie-Hellman and and the discrete log problem

b. Number field sieve

c. Export-grade cryptography

d. Man-in-the-middle attacks

e. TLS

2. Logjam attack: working, time costs, consequences

3. State-level threats to 1024-bit DH, potential consequences

4. Mitigations: Author recommendations and in TLS 1.3

State-level threats to 1024-bit DH

• 768-bit groups are within reach for academic computational resources

• 1024-bit groups: performing precomputations for a small number of 1024-bit
groups is plausibly within the resources of state-level attackers

• The authors offer calculations suggesting that it is plausibly within NSA’s resources
to perform NFS precomputations for at least a small number of 1024-bit Diffie-
Hellman groups

• The precomputation would likely require special-purpose hardware but would not
require any major algorithmic improvements beyond what is known in the
academic literature

• Although the cost of the precomputation for a 1024-bit group is several times
higher than for an RSA key of equal size, a one-time investment could be used to
attack millions of hosts

Effects of a 1024-bit Break

• Small number of fixed/standardized groups are used by millions of servers.

• 68.3% of Alexa Top 1M sites support DHE, as do 23.9% of sites with browser-
trusted certificates. Of these, 84% use a 1024-bit or smaller group, with 94%
of these using one of five groups

• Performing precomputation for a single 1024-bit group would allow passive
eavesdropping on 18% of popular HTTPS sites, and a second group would
allow decryption of traffic to 66% of IPsec VPNs and 26% of SSH servers

• The authors hypothesize that the plausible break of a small number of 1024-
bit groups explains the long-unanswered question raised by the Edward
Snowden leaks: the decryption of VPN protocols by the NSA. They also
provide speculative evidence for this explanation

1. Conceptual Discussion
a. Diffie-Hellman and and the discrete log problem

b. Number field sieve

c. Export-grade cryptography

d. Man-in-the-middle attacks

e. TLS

2. Logjam attack: working, time costs, consequences

3. State-level threats to 1024-bit DH, potential consequences

4. Mitigations: Author recommendations, and in TLS 1.3

Author Recommendations
1. Transition to elliptic curves

2. Increase minimum key strengths: disable DHE_EXPORT and configure DHE
ciphersuites to use primes ≥2048 bits. Browsers and clients should raise
the minimum accepted size for Diffie-Hellman groups to at least 1024 bits
in order to avoid downgrade attacks

3. Phase out 1024-bit DHE (and 1024-bit RSA) in the near term. Clients
should raise the minimum DHE group size to 2048 bits as soon as server
configurations allow. Server operators should move to ≥2048-bit groups.

4. Avoid fixed-prime 1024-bit groups. When needed, generating fresh 1024-
groups may help, but it is possible to create trapdoored primes that are
computationally difficult to detect. At minimum, clients should check that
servers’ parameters use safe primes or a verifiable generation process.
Ideally, the process for generating and validating parameters in TLS should
be standardized to thwart the risk of trapdoors

Mitigations in TLS 1.3

• All legacy and dangerous functionality was removed from TLS version 1.3:
SHA-1, RC4, DES, 3DES, AES-CBC, MD5, vulnerable DH groups, weak export
ciphers

• Server signature is on the entire handshake transcript up to that point

• No more take-out menu: Colossal set of combinations was allowed for
negotiation of cipher suites in TLS 1.2 is replaced by a much more compact set.

Thanks for your attention!

Questions?

	Slide 1: Imperfect Forward Secrecy: How Diffie-Hellman Fails in Practice
	Slide 2: Overview
	Slide 3: Contents of the talk
	Slide 4
	Slide 5: Diffie-Hellman Key Exchange
	Slide 6: Discrete logarithm problem
	Slide 7
	Slide 8: Number field sieve (NFS) for DLP
	Slide 9: Index Calculus
	Slide 10: Number field sieve
	Slide 11: Complexity
	Slide 12
	Slide 13: Size of p and export grade cryptography
	Slide 14: Size of p and export grade cryptography
	Slide 15
	Slide 16
	Slide 17: Man-in-the-middle (MITM) attacks
	Slide 18: Techniques
	Slide 19
	Slide 20
	Slide 21
	Slide 22
	Slide 23: TLS Handshake messages
	Slide 24
	Slide 25: Logjam
	Slide 26: The attack
	Slide 27: The underlying vulnerability
	Slide 28: Challenges
	Slide 29
	Slide 30: Challenges
	Slide 31: Time costs: 512-bit cryptanalysis
	Slide 32: Consequences
	Slide 33: Other Weak and Misconfigured Groups
	Slide 34
	Slide 35: State-level threats to 1024-bit DH
	Slide 36: Effects of a 1024-bit Break
	Slide 37
	Slide 38: Author Recommendations
	Slide 39: Mitigations in TLS 1.3
	Slide 40
	Slide 41: Thanks for your attention! Questions?

