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A group is called simple when its only normal subgroups are the trivial
subgroup and the whole group. A group that is not simple can be broken
into two smaller groups, a normal subgroup and the quotient group, and the
process can be repeated. Simplicity of a group is a property that can, in fact
be compared to the primeness of a number. There is no clear classification of
infinite simple groups. However, the finite simple groups are finite in number
(unlike infinite primes) and are classified as per The Classification Theorem
for Finite Simple groups. Here we have a look at the Large Mathieu Groups,
which fall into the last category, viz. Sporadic Groups, as per this theorem.

In order to construct the large Mathieu groups, we require quite a few
preliminary lemmas and theorems. M24 is viewed as an automorphism group
of the 24 Golay Code. The construction of the Golay code itself requires a
thorough understanding of finite fields, vector spaces, their bases and their
properties, linear transformations, matrices, the classical groups, multiple
transitivity of group actions and of basic projective geometry.

Fields

A field F is a set together with two laws of composition: + : F× F → F
and · : F× F → F called addition and multiplication respectively, satisfying
the axioms :

1. Addition makes F into an Abelian group F+, its identity element being
denoted by 0.

2. Multiplication is commutative, and it makes the set of nonzero elements
of F into an Abelian group F× whose identity element is denoted by
1.

3. Distributive law. ∀ a, b ∈ F , a(b+ c) = ab = ac
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Theorem: Let p be a prime integer. Every nonzero congruence class
modulo p has a multiplicative inverse. Therefore Fp is a field of order p.

Proof: Let a be a congruence class modulo p. Because (a,p)=1, ∃ integers
b and c such that ba + cp = 1 ⇒ ab ≡ 1(modp). Thus the congruence class
modulo p of b is the multiplicative inverse of a. Associativity, commutativity
and distributivity of modulo p addition and multiplication follow from the
same properties of normal integer addition and multiplication. So all the
field axioms are satisfied.

The characteristic of a field is defined to be the order of 1 as an element
of the additive group F+, provided that the order is finite. If 1 has order
infinity, the field is said to have characteristic 0.

Theorem (Prime Fields): The characteristic of any field is either zero
or a prime number.

Proof: Assume a field with a composite characteristic n. Then there
exist

a, b < n

such that
n = ab

The nonzero congruence classes modulo p of a and b lie in the multiplicative
group, but their product ab ≡ 0 mod n, does not. This contradicts the field
axioms. Thus n has to be prime.

Theorem (Prime Field Uniqueness): Up to isomorphism, there is
only one field Fp with p elements. Proof: An isomorphism can be drawn,

mapping the additive identities to each other and the (nonzero) multiplicative
generators to each other.

Theorem (Primitive Elements): Given any field Fq with q elements,
the nonzero elements of Fq form a multiplicative cyclic group Fq

∗ = {0, 1,
α, α2, . . . , αq−2}. Consequently Fq has φ(d) ≥ 1 elements of multiplicative
order d that divides q − 1, no elements of any other order. In particular, Fq
has φ(q) ≥ primitive elements. The proof of the above theorem involves the

definition of polynomials over the field, of factoring of these polynomials, the
definition of prime polynomials, and a description of arithmetic mod a monic
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prime polynomial over the field. Using the definitions of mod-g(x) arithmetic
for a prime monic polynomial g(x) of degree m, we define two operations,
and subsequently show that the set RF,m of remainder polynomials mod g(x)
actually forms a finite field of size |F|m, where F is the field over which
the polynomials are being defined. This field is denoted by Fg(x). Since a
polynomial with degree m can have at most m degree-1 factors, the proof
of The Fundamental Theorem of Algebra is clear. This theorem states that
over any field F, a monic polynomial f(x) ∈ F[x] of degree m can have no
more than m roots in F. If it does have m roots {β1, β2, . . . , βm} then the
unique factorization of f(x) is

f(x) = (x− β1)(x− β2) . . . (x− βm)

Also every nonzero element in the field satisfies

xq−1 = 1

because they belong to the multiplicative group of order q − 1. Since the
polynomial

xq−1 − 1 = 0

has at most q-1 roots in the field, it must have q-1 distinct roots and these
are all the nonzero elements of the field. So

xq−1 − 1 =
∏
β∈F

(x− β)

Hence, once we have shown that in any field the multiplicative group of
nonzero elements has at most one cyclic subgroup of any given order n (con-
sisting of roots of

xn − 1 = 0

By a simple and elegant counting of elements of F it can be shown that F*
contains precisely φ(q−1) primitive elements. By the cyclic groups theorem,
{F ∗q } has at most one cyclic subgroup of each size d, where d is the order of
an element β ∈ {F ∗q } and by Lagrange’s theorem, d divides q − 1. Also, the
number of elements in a cyclic subgroup of size d having order d is φ(d). So,
the number ’n’ of elements in {F ∗q } with order q − 1 is at most

n ≤
∑

d:d|q−1,d 6=q−1
Φ(d)

But,
q − 1 =

∑
d:d|q−1

Φ(d)⇒ q − 1 ≥ n+ Φ(q − 1)
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Hence the number of elements with order q − 1

= (q − 1)− n

≥ Φ(q − 1)

But, F ∗q has at most Φ(q − 1) elements of order q − 1 (0 if F ∗q is not cyclic,
and Φ(q − 1) if F ∗q is cyclic). Thus F ∗q has Φ(q − 1) elements of order q − 1.
Thus all inequalities must be satisfied with equality. Thus the number of
elements with order less than q is precisely∑

d:d|q−1,d 6=q−1
Φ(d)

Hence for every divisor d of q − 1, F ∗q has precisely Φ(d) elements of order
d, or F ∗q has exactly one cyclic subgroup of order d. In particular, F ∗q is cyclic.

If a field has characteristic p, then Fq has a prime subfield Fp with p
elements. Now, 0, 1,−1 ∈ Fp, so xq − x can be regarded as a polynomial
in Fp[x]. By unique factorization (the fact that the prime factorization of
a polynomial is unique; proof- by contradiction, assuming a polynomial of
least degree m with a non-unique factorization, one obtains a polynomial of
smaller degree and a non-unique factorization) xq − x factors over Fp into a
unique product of prime (monic and irreducible) polynomials gi(x) ∈ Fp[x].
Each gi(x) is also a monic polynomial in Fq[x] since each coefficient of gi(x)
is an element of Fq. Hence, again by unique factorization,

xq − x =
∏
β∈Fq

(x− β) =
∏
i

gi(x)

and each gi(x) must be reducible over Fq. The prime polynomials in Fp gi(x)
are called minimal polynomials of Fq. Also each element of Fq is a root of
exactly one minimal polynomial of Fq, and this partitions the elements of Fq
into disjoint sets.

Lemma: The minimal polynomial of β ∈ Fq is the monic polynomial of
least degree in Fp[x] such that g(β) = 0. Moreover, for any f(x) ∈ Fp[x],
f(β) = 0 iff g(x) divides f(x).

Define the map mβ : Fp[x] → Fq

mβ(f(x)) = f(β)

The image of this map is, by definition, the subset of elements Gβ ⊆ Fq that
can be expressed as linear combinations over Fp of powers of β. It is easily
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proved using the Euclidean division algorithm the equality of the two sets:

Gβ = {f(β) =
∑
i

fiβ
i, f(x) ∈ Fp[x]} = {r(β), r(x) ∈ RFp,m}

Also, it is found that the map drawn as a bijection also preserves addition
and multiplication, i.e. it is an isomorphism. Hence, Gβ is a field isomorphic
to Fg(x) and the correspondence is given by r(β) ∈ Gβ ↔ r(x) ∈ RFp,m (here
g(x) is the minimal polynomial of β).

Theorem: Every finite field is isomorphic to a field Fg(x). In
particular, every finite field has order a power of some prime p.

We have proved that every subfield generated by an element β of a finite
field Fq (i.e. the field of the linear combinations of β over Fp) must be
isomorphic to a field Fg(x) where g(x) is the minimal polynomial of β. Now
every finite field contains a primitive element α. The subfield generated by
α, Gα must be the whole field Fq. This proves the theorem.

Lemma: Every prime polynomial g(x) ∈ Fp[x] of degree m divides
xp

m − x.

Consider any prime polynomial g(x) of degree m in Fp[x]. The set RFp,m

with mod-g(x) arithmetic forms a field Fg(x) with pm elements. The remain-
der polynomial x ∈ RFp,m is a field element β ∈ Fg(x). Evidently, g(β) =
0, but r(β) 6= 0 if deg(r(x)) ¡ m. So g(x) is the minimal polynomial of β.
Because

βp
m−1 = 1

(because β is an element of a field of size pm), β is a root of

xp
m−1 − 1

which means that g(x) divides xp
m−1 and hence xp

m −x. (In short, for every
prime polynomial of degree m, there is a field element β in Fg(x) which has
g(x) as its minimal polynomial. The result then follows from the properties
discussed).

Theorem: All finite fields of the same size are isomorphic.

We have proven that every prime polynomial g(x) over Fp of degree m
(provided such a polynomial exists) divides xp

m − x (and is the minimal
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polynomial of some field element β). By unique factorization, every field of
size pm includes m elements whose minimal polynomial is g(x). Now choose
one of these elements, say β. The subfield generated by β is isomorphic to
Fg(x), whose elements are remainder polynomials mod-g(x). But the order of
Fg(x) is pm, so the subfield must be the whole field Fq. But, the field chosen
with pm elements was arbitrary, and so is the prime polynomial g(x). Hence
the theorem follows. (Note that the number of primitive elements in the field
Φ(pm− 1) is greater than or equal to m, since each of the m powers of p, p0,
p1, . . ., pm−1 is co-prime to pm − 1).

Theorem: The polynomial xp
m −x factors over Fp into the prod-

uct of minimal polynomials whose degrees divide m, with no rep-
etitions. One proves first that the roots of a minimal polynomial of a field
form a cyclotomic set of the form

{β, βp, βp2 , . . . βpn−1}

where n divides m. The definition of formal derivatives (and subsequently
the connection with repeated factors) facilitates the proof that xp

m−1 − x
has no repeated factors, which was earlier proved with the assumption of the
existence of a field F with pm elements or of a prime polynomial over Fp of
degree m.

Theorem: Finite fields Fm
p exist for all prime p and m ≥ 1.

It is further shown that there do not exist enough prime polynomials of
degree < m that their product could have degree pm, thereby proving that
there must exist a prime polynomial of degree m, and hence a field of size
pm.
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Vector Spaces

Definition: A vector space V over a field F is a set together with
two laws of composition:

• Addition V × V −→ V

• Scalar multiplication by elements of the field F × V −→ V .

These laws are required to satisfy the following axioms:

• Addition makes V into a commutative group V + with identity denoted
by 0.

• 1 ∗ v = v for all v in V

• Associative law: (ab)v = a(bv) for all a, b in F, v in V.

• Distributive laws: (a+ b)v = av + bv; a(v + w) = av + aw for all a, b
in F and v, w in V.

A set of vectors that is linearly independent and that spans the vector
space V is said the be the basis of V. Equivalently, if every vector in V can
be expressed uniquely as a linear combination of a certain set of vectors, then
this set is the basis of V. Most results about bases(Eg. their formation by
the addition of elements to an independent subset of V, or by removal of
elements from a subset spanning V, uniqueness of the size of the basis for V)
are fairly straightforward. The existence of a basis for every vector space is,
however, not so simple to prove. Clearly, an n-dimensional vector space over
a field F is isomorphic to F n, the set of column vectors with n entries over
F.

Linear Transformation: A linear transformation is a map be-
tween vector spaces V and V ′ over a field F , Φ: V −→ V ′ satisfying
Φ(x + y) = Φ(x) + Φ(y) and aΦ(x) = Φ(ax) for all x, y ∈ V and a ∈
F .

The representing matrix of a linear transformation T : V −→ V with
respect to basis β is the n×n matrix with the ith column as viT , where the
basis of V is β = {v1, v2, . . . vn}, and right multiplication is used to denote
the action of the transformation on vectors in V.

[T ]β =


−v1T−

...
−vnT−


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For a given vector x ∈ V ,

x = x1v1 + x2v2 + . . .+ xnvn

for scalars xi ∈ F . So,

xT = (x1v1 + x2v2 + . . .+ xnvn)T =
∑

xi(viT ) = [T ]β


x1
...
xn


So the linear transformation can be viewed in terms of a matrix, the action
on a given vector being given by normal matrix multiplication. It can easily
be proved that a linear transformation is bijective iff the n vectors v1, . . .,
vn are linearly independent, or in other words if they form a basis of V .
By the invertible matrix theorem, this is the same as saying that a linear
transformation is bijective iff its representing matrix is invertible.

Linear Groups and the Simplicity of PSL3(F4)

We denote by GLn(F ) (the General Linear Group) the group of bijective
linear transformations over an n-dimensional vector space V over a field F .
Thus GLn(F ) can be viewed as the set of invertible n×n matrices over field
F . Define SLn(F ) (the Special Linear Group) as the subgroup of GLn(F )
whose matrices have determinant 1.

Let Eij denote a matrix with entry all entries except the (i, j)th as 0, and
with the (i, j)th entry as 1. We define three types of matrices, called the
elementary matrices. Left multiplication by these matrices corresponds to
the elementary row transformations.

• Transvection: A matrix Tij = I + bEij, where I is the identity ma-
trix, and b is any non-zero field element. It is easy to verify that left
multiplication by Tij with a matrix A adds b times theith column of A
to the jth column, whereas right multiplication by Tij with a matrix A
adds b times thejth row of A to the ith row.

• Pij = I−Eij +Eji−Eii−Ejj The matrix Pij interchanges the negated
jth row of A with the ith row of A. A Pij matrix is invertible and
P−1ij = Pji
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• Ui(d) = I + (d−1 − 1)Eii + (d− 1)E(i+1)(i+1), d ∈ F ∗

Now, Tij, being a triangular matrix, has determinant the product of its
diagonal entries, which are all 1, and hence is in SLn(F ). Moreover, it can be
shown that each Pij and Ui(d) can be expressed as products of transvections,
hence all 3 elementary matrices lie in SLn(F ).

Theorem: SLn(F ) is generated by the matrices Tij(b), where b ∈
F ∗ and i 6= j.
Proof: We must show that if A ∈ SLn(F ) then there exist matrices P,Q
such that P,Q are products of transvections and PA = I ⇔ A = P−1. Let
A ∈ SLn(F ). By Gaussian elimination, we must multiply A with Tij(b) and
Pij matrices to row reduce it and may now assume its reduced row Echelon
form. We know that the reduced row Echelon form of an invertible matrix
is I. On putting P as the product of these elementary matrices, the desired
result is obtained.

Theorem: If n ≥ 3 or if n = 2 and |F | > 3, then SLn(F ) is identical
to its commutator subgroup SLn(F )′.
Proof: Let G = SLn(F ). If we can show that the generators Tij(b) are
contained in the commutator subgroup G′, we are done. If n ≥ 3, then let i
6= j, k 6= i, j, we have:

Tik(b)Tkj(1)Tik(b)
−1Tkj(b)

−1 = Tik(b)Tkj(1)Tik(−b)Tkj(−1)

= (I + bEik)(I + bEkj)(I − bEik)(I − bEkj) = I + bEij = Tij(b)⇒ Tij(b) ∈ G′

Now let n = 2.

U1(d)−1T12(c)U1(d)T12(−c) =

(
1 c(d2 − 1)
0 1

)

Now |F ∗| > 2. If ¡d¿ = F*, d 6= 1 and d2 6= 1 ⇒ d2 − 1 6= 0⇒ (d2 − 1)−1 ∈
F ∗ ⇒ c = b(d2−1)−1. Referring to our matrix above, we see that T12(b) ∈ G′.
A similar result holds for T21(b).

Lemma: If n ≥ 3 or if n = 2 and |F | > 3, then SLn(F ) = GLn(F )′.
The proof of this lemma used he first isomorphism theorem and the onto
homomorphism, det : GLn(F ) −→ F ∗. The kernel of this homomorphism is
SLn(F ) by definition, thus the quotient group G :n (F )/SLn(F ) is isomor-
phic to the Abelian group F ∗ and is this Abelian. So, GLn(F ) ⊆ SLn(F ).
The reverse inclusion is obvious, since SLn(F )′ = SLn(F ).
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Theorem: The centre of the GLn(F ) consists of the set of scalar
matrices over F ∗, the same being true for SLn(F ), whose centre
consists of scalar matrices αI, where αn = 1.
The proof is simple and involves using the fact that a matrix in the centre
must commute with a transvection.

We define the Projective General linear group,

PGLn(F ) = GLN(F )/Z(GLN(F )

and the Projective Special Linear Group,

PSLn(F ) = SLN(F )/Z(SLN(F )

Projective Geometry

A projective n-space over field F, P n(F ) is defined to be the set of lines
through the origin.

Lemma: For v, w ∈ V #, define v w if there exists an α ∈ such that
w = αv. Then is an equivalence relation on V #. (Here V # = F n − {0})

The properties of a field of identity, inverses and of associativity of scalar
multiplication facilitate the proof of reflexivity, symmetry and transitivity
respectively.

Then the projective (n-1)-space is defined as:

P n−1(F ) = {[v]: v ∈ V # }, where [v] = {αv: α ∈ F×}.

If there is a point (f0, f1, . . . fn) on a line through the origin with f0 6= 0,
then we see that f0−1(f0, . . . fn) = (1, f−10 f1, . . . f

−1
0 fn) is the unique point on

the line that it determines with 1 for its first co-ordinate (from the uniqueness
of inverses). On the other hand, if 0 is the first co-ordinate for any point
on the line (except origin) then 0 is the first co-ordinate for every point on
the line. Lines satisfying this property are the lines through the origin in the
n-dimensional subspace defined by f0 = 0, the subspace being simply a copy
of P n−1(F ) with a zero glued to the front. Points constituting this space are
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said to lie in the ”hyperplane at infinity”, H∞. So, a projective space P n(F )
can be decomposed into two parts: a copy of F n(the affine space) and one
of P n−1(F ) (the hyperplane at infinity). Also, if one defines the set

Ui = {[v1 : . . . : vn+1] ∈ pn(E)|vi 6= 0}

where the homogeneous co-ordinates of [v] are

[v1 : . . . : vn + 1]

, then clearly,
pn(E) = Un+1 ∪H∞

Now, as a base case, ‖P 0(F )‖ = 1. Hence, recursively, one may derive

|P n(F )| = qn + qn−1 + . . .+ q + 1

where q is the size of the field.

There is a clear bijection between the set of one-dimensional non-zero
subspaces of a vector space over a field and between the projective space
as defined above. Moreover, the projection under the map that takes every
vector to its equivalence class, of a two-dimensional subspace of V # is called
a projective plane, and that of a one-dimensional subspace of V # is called
a projective line.
In general, a projective subspace PW of PV is of the form π(W\0) where π
is the residue class map and W is a vector subspace of V.

It is not difficult to verify that GLn(F ) acts on P (n−1)(F ) by [v]A = [vA]
for A ∈ GLn(F ) and [v] ∈ P (n−1)(F ), and that the kernel of this action is
the centre of GLn(F ), Z(GLn(F )). An analogous result is true for SLn(F ).

Theorem: For n ≥ 2, SLn(F ) acts 2-transitively on P (n−1)(F ).
Proof: Let n ≥ 2. By the equivalent conditions for 2-transitivity, it suffices
to show that for a distinct pair [v1] and [v2] there exists matrix A ∈ SLn(F )
such that [v1]A = [e1] and [v2]A = [e2]. Since [v1] 6= [v2], i.e. v1 6= α v2 for
any scalar α, which means the set {v1, v2} is linearly independent and hence
can be extended to a basis {v1,. . . , vn}. Consider the change of basis matrix
A’, i.e. the representing matrix of the linear transformation T that maps vi
to ei. Let det(A’) = α, some non-zero scalar. Then consider A” = diag(α−1,
1, . . ., 1) and A = A’A”. Det(A) = det(A’)det(A”) = 1, v1A = e1A

′′ = α−1e1
and v2A = e2A

′′ = e2. Hence [v1]A = [e1] and [v2]A = [e2] as required.
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Lemma: For n ≥ 2, let (e1, e2, . . . en) be the standard basis for F n and let
G = SLn(F ). Then StabG([e1]) contains a normal Abelian subgroup A(e1)
whose conjugates in G generate G.
Let T ∈ StabG([e1]). [e1]T = [e1] ⇒ e1T = αe1 for some non-zero scalar α.
So the first row of T is αe1. The normal subgroup specified in the lemma
can now be identified with the kernel of the homomorphism that maps a
matrix to its submatrix obtained on deleting its first row and column. It
can explicitly be shown to be Abelian, and its conjugates can be shown to
generate all transvections and hence G.

We define a block of a set X that is acted upon by a group G to be a
subset B of X such that for any g ∈ G, either B ∩Bg = φ or B = Bg.
If there are no blocks other than the trivial blocks (φ, X and one-point sub-
sets), then G is said to act primitively on X.

Lemma: Let G act transitively on X. Then G acts primitively iff Stab(x)
is a maximal subgroup for each x ∈X.
The proof is by contradiction. On assuming Stab(x)⊂ H ⊂ G, one may prove
that the set xH is a non-trivial block of X. On assuming that Stab(x) is max-
imal and that there exists a non-trivial block B, the maximality of Stab(x)
is contradicted.

Lemma: If G acts primitively on a set X and normal subgroup H of G
is not contained in the kernel of the action, then H acts transitively on X. In
particular, G acts transitively on X as long as the action is not trivial.
H also acts on X, and thus partitions X into H-orbits xH (using the right
actions notation). If x∈X is fixed and g∈G, using the normality of H in G,

(xH)g = x(Hg) = (xg)H

Thus orbit xH is taken to orbit (xg)H by g∈G. Because these orbits are a
partition of X, ∀x∈X and ∀x∈X, either (xH)g = xH or (xH)g
capxH = φ. Thus the H-orbits are blocks of X. Because G acts primitively
on X, the orbits are either X or single points of X. Because H is not contained
in the kernel, ∃ h∈H such that yh6=y for some y∈X ⇒ yH 6={y}. Thus yH
= X for some y∈X. Hence H acts transitively on X.

Lemma: If G acts primitively on a set X and H⊆G acts transitively on
X, then G = Stab(x)H.

Lemma: If G acts 2-transitively on X, then G acts primitively.
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Assume a non-trivial block B of X. There must exist distinct x, y, z in X
with x, y ∈ B and z ∈ B. Because G acts 2-transitively, ∃ g ∈ G such that
xg = x and yg = z. Thus x ∈ Bg∩B → Bg∩B 6= φ. Also, we have z ∈ Bg →
Bg∩B 6= B. But this contradicts the definition of a block. So B is trivial.

Lemma: Let G act on X and let K be the kernel of the action. If

• G acts primitively on X

• G = G’

• ∃ x ∈ X such that Stab(x) contains a normal abelian subgroup with
the property that G is generated by the conjugates g−1a(x)g, g∈G,
a(x)∈A(x)

Then, G/K is simple.

Theorem: If n ≥ 3 or if n = 2 and —F— ≥ 3, then PSLn(F ) is simple.
Proof- Let n ≥ 2. Now, SLn(F ) acts 2-transitively on P n−1(F ) and the ker-
nel of the action is Z(SLn(F )). So SLn(F ) must act primitively on P n−1(F )
as per the lemma. Also, except for n=2 and —F—=2 or 3, SLn(F ) =
SLn(F )′. We have A(e1) ⊂ Stab(e1) ⊂ SLn(F ) where A(e1) is the normal
abelian subgroup whose conjugates generate SLn(F ). Thus SLn(F )/Z(SLn(F ))
is simple.

Theorem(orders of linear groups): Let Fq be a finite field. We have:

#|GLn(Fq)| =
∏
i=0

qn − qi

Follows from the counting of the number of invertible n×n matrices, qn -
1 choices for the first row, qn − q choices for the second, since there are q
multiples of the first row, qn− q2 for the third, since there are q2 linear com-
binations of the first two rows, and so on.

#|SLn(Fq)| =
∏
i=0

qn − qi//q − 1

Follows from the fact that SLn(F ) is the kernel of the determinant homo-
morphism, hence GLn(F )/SLn(F ) ' F×.

#|PGLn(Fq)| =
∏
i=0

qn − qi/q − 1
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Z(GLn(F )) = F×I, hence |PGLn(F )| ≡ |GLn(F )|/|F×I|

#|PSLn(Fq)| = (qn − 1)(qn − q) . . . (qn − qn−2)qn−1/d,

where
d = gcd(n, q − 1)

|Z(SLn(Fq))| = |{fI|f ∈ F×, fn = 1 = f q−1 ⇔ fd = 1}| = d

where d = gcd(n, q-1).

Corollary: PSL2(F2) and PSL2(F3) are not simple.
Follows from the fact that their orders are respectively 6 and 12, and the
smallest simple group of non-prime order is A5 (order 60).

|GL3(F4)| = (43 − 1)(43 − 4)(43 − 42) = 63× 60× 48 = 181440
|SL3(F4)| = |PGL3(F4)| = 181440/3 = 60480 |SL3(F4)| = 60480/3 = 20160
(gcd(3, 4-1) = 3)

Semi-linear Groups

A bijective ring homomorphism from a field E to itself is called a Field
automorphism.
We use the notation of right operators, i.e. for an automorphism σ, the
mapping of a ∈ E is denoted as aσ.

Lemma: The automorphisms of a field E form a group, Aut(E)
under the operation of function composition.

# A field E is said to be an extension of a field F if F⊆E and
this extension field is denoted by E/F. If E is a field, then the
intersection of all its subfields is called the prime subfield of E.
This is the smallest subfield of E, and consists of 1 and the elements
generated by it, i.e. 1, 1+1, 1+1+1, . . .. It is isomorphic to Zp if E
is finite and to Q if E is infinite.
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# Every element of Aut(E) fixes the prime subfield P (follows from the
fact that an automorphism must fix the identity 1).

We define the Galois Group, Gal(E/F) to be the automorphism group
of a Galois extension field E/F, where each automorphism fixes every element
of the base field F.

Then clearly, if the Galois extension field E/P has prime subfield P, then
Aut(E) = Gal(E/F).

Definition: Let V, W be two vector spaces over a field F and let
θ be a field automorphism of F. A transformation T: V −→ W is
θ-semi-linear if for all x, y ∈ V and a ∈ F,

(x+ y)T = xT + yT

(ax)T = aθT

Theorem: Let V = En be a vector space over the Galois extension field
E/F. The set of all invertible semi-linear transformations from V to V forms
a group, the General Semi-linear Group, ΓL(V).
Outline of proof- If S,T ∈ ΓL(V) are respectively θ and φ semi-linear, then
ST is φθ-semi-linear (closure). The composition of functions is associative.
The identity transformation is defined as the one that maps every element
to itself, and this element is 1-semi-linear. By definition the elements are
invertible. If T ∈ ΓL(V) is θ-semi-linear, then T−1 is θ−1 semi-linear

Lemma: Let V = En be a vector space over a Galois extension
field E/F. Define f: Gal(E/F) → ΓL(V) such that

(x1, x2, . . . xn)f(σ) = (xσ1 , . . . , x
σ
n).

Then f is a one-to-one homomorphism.

Proof: It is easy to verify the properties of a semi-linear transformation
for f(σ), showing that f is well-defined and that f(σ) is σ-semi-linear. Now
let φ, σ ∈ Gal(E/F) and let x ∈ V. We have

x(f(σ)f(φ)) = ((x(f(σ)))f(φ) = ((x1, . . . xn)f(σ)f(φ)) = (xσ1 , . . . x
σ
n)f(φ))

= (xσφ1 , . . . xσφn ) = (x1, . . . xn)f(σφ)

So f is a homomorphism. Now suppose that f(σ1) = f(σ2) ⇒ xf(σ1)= xf(σ2)
for all x ∈ V. For k ∈ E/F, we have

15



(kσ1 , 0, . . . , 0) = (kσ2 , 0, . . . , 0) ⇒ kσ1 = kσ2 . Because k is arbitrary, this
means that σ1 = σ2, and thus f is one-to-one.

Theorem: Given a vector space V = En over a Galois extension
field E/F, we have ΓL(V) = GL(V)f(Gal(E/F)).
Proof: Take T ∈ ΓL(V), where T is σ-semi-linear. Now, f(σ−1) ∈ ΓL(V). One
may verify that Tf(σ−1) ∈ GL(V ). Since f is a homomorphism, (Tf(σ−1)f(σ))
= T(f(σ−1)f(σ)) = Tf(σ−1σ) = Tf(1) = T ∈ ΓL(V). So every element in
ΓL(V) is the product of an element of GL(V) with an element of f(Gal(E/F)).
Moreover, one may easily prove that GL(V ) ∩ Gal(E/F ) = 1, and hence
ΓL(V) is the semi-direct product ΓL(V) = GL(V)Gal(E/F) (semi-direct).
Similarly, we find that the Special Semi-linear group,

∑
L(V) defined as

the product
∑

L(V) = SL(V)Gal(E/F) is also a semi-direct product.

Theorem: Let V = En be a vector space over the Galois exten-
sion field E/F. If S ∈ GL(V) and the matrix of S is A, then Sσ:=
F (σ)−1Sf(σ) ∈ GL(V) and f(σ) and the matrix of Sσ is Aσ := (aij)

σ

= (aσij).

Action of the Semi-linear Groups on Projec-

tive Space

Lemma: The semi-linear group ΓL(En) acts on P n−1(E) such that
[v]T = [vT] for t ∈ ΓL(En) and [v] ∈ P n−1 (E). The special linear group∑

L(En) acts similarly on P n−1 (E).

Lemma: Z(GLn(F )) is a normal subgroup of ΓLn(E
n) and Z(SLn(F ))

is a normal subgroup of
∑
Ln(E

n).
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Lemma: The kernels of the actions of ΓLn(En) and GLn(En) are iden-
tical, and so are those of

∑
Ln(En) and SLn(En).

Proof: It suffices to show that the kernel of the action of ΓLn(En) on
P n−1(E) is contained in Z(GLn(En)), the kernel of the action of GLn(En).
An element of ΓLn(En) is now represented as Sf(σ) where S ∈ GLn(En) and
f(σ) ∈ f(Gal(E/F)). Suppose such an element lies in the kernel of the action.
Then,

αei = ei(Sf(σ)) = (eiS)(f(σ)) = (eiS)φ ⇒ αφ
−1

ei = (αei)
σ−1

= ((eiS)σ)σ
−1

= eiS

So, the ith row of S is ασ
−1
ei. Hence S is a scalar matrix. Consider the action

of Sf(σ) on the row vector (λ, 1, . . . , 1) ∈ En, where λ is a non-zero field
element. When we equate the transformed row vector to an arbitrary scalar
multiple of itself, we conclude that σ = 1, the identity transformation. Hence
the kernel is the same as that of the action of GLn(En). The proof is similar
for

∑
Ln(En) and SLn(En).

Then clearly, the Projective semi-linear group

PΓLn(E) := ΓLn(E)/Z(ΓLn(E))

and the Projective special semi-linear group

P
∑

Ln(E) :=
∑

Ln(E)/Z(
∑

Ln(E))

act faithfully on P n−1(E).

Action of ΓLn(E) on zero sets of Homogeneous

Polynomials

A homogeneous polynomial is defined to be a polynomial in E[x1, . . . , xn]
where each term is of the same total degree.
Lemma: If f is a homogeneous of degree d and if α ∈ E and x ∈ En,
then

f(αx) = αdf(x)

Let f: En → E be a homogeneous polynomial in n variables. The zero
set of f is

Z(f) = {[x] ∈ P n−1(E)|f(x) = 0} ⊆ P n−1(E)
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A curve in P n−1(E) is defined as the zero set of a homogeneous polyno-
mial f∈E[x1, . . . xn].

Bilinear form: Let V denote a vector space of dimension n over a field
E. A bilinear form is a map

B : V × V → E

that is linear in each variable as the other is held fixed, i.e.

B(x+ y, z) = B(x, z) +B(y, z)

B(ax, y) = aB(x, y)

B(x, y + z) = B(x, y) +B(x, z)

B(x, ay) = aB(s, y)

∀x, y, z ∈ V, ∀a ∈ E

It can be proven that
B(x,y) = xAyT is a bilinear map. When the matrix A is I, then this map
becomes the regular dot product.

A bilinear form B that satisfies B(x, y) = B(y, x) for all x, y ∈ V is called
symmetric. One that satisfies B(x,x) = for all x ∈ V is called an alternate
or skew-symmetric bilinear form.

Orthogonality with respect to a bilinear form on a vector space is defined
as: v is orthogonal to w if B(v,w) =0 for v,w ∈ V #. If B(v,w) = 0⇔ B(w,v)
= 0, we say that B is a reflexive bilinear form.

We define the orthogonal complement of a set S ⊆ V to be the set

S⊥ = {v ∈ V |B(v, w) = 0⇔ B(w, v) = 0, w ∈ S}

It is easy to verify that dim(S⊥) = dim(V) - dim(S) and with this result one
may prove that S⊥⊥ = S.

Theorem: The two definitions of lines in P 2(F4) given agree.
Proof: Let W be a 2D subspace of E3. By definition, π(W ) is a projective
line. Now, W is a plane through the origin. Also, the dot product is reflexive,
which means that W⊥⊥ = W . Thus W is the set of x ∈ E3 such that a·x
= 0, where a is a nonzero vector orthogonal to W and · is the dot product;
a = (a1, a2, a3). Let f = a1x1 + a2x2 + a3x3. We see that π(W ) = Z(f)
Conversely, let Z(f) be the zero set of the linear homogeneous polynomial f =
a1x1 +a2x2 +a3x3. Because the coefficients of f are not all 0, a=(a1, a2, a3) 6=
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0. Thus Z(f) is the set of all [y] such that a·y = 0. Let W = {y ∈ V |a·y = 0}.
Dim(a) = 1 → Dim(W) = dim(V) - dim(a) = 3-1 = 2. Hence W is a 2D
subspace and Z(f)=π(W ).

We define the set Z(f)T = {[x]T ∈ P n−1(E)|f(x) = 0}, which is the orbit
of the zero set Z(f) under the action of ΓLn(E) already defined.

If f ∈ E[x1, x2, . . . xn] is homogeneous of degree d, and T ∈ ΓLn(E), we
define
fT (x) = f(xT−1) ∀ x ∈ En. Note that if T has a non-trivial field automor-
phism (i.e. if it is not linear), then fT is not a polynomial in [x1, . . . , xn].

Lemma: For T ∈ ΓLn(F) and f ∈ E[x1, . . . , xn], the zero set of fT

is well-defined and equal to (Z(f))T , i.e.

Z(fT ) = (Z(f))T

Lemma: If f is homogeneous of degree f and T = T1θ ∈ ΓLn(E)
where T1 ∈ GLn(E) and θ ∈ Gal(E/F), then :

Z(fT ) = Z(fT1)θ

where fθ is the polynomial resulting from the application of θ to the coeffi-
cients of f.

Theorem: ΓLn(E) acts on the zero sets of homogeneous poly-
nomials. The kernel of the action is the centre of Γ Ln(E). Hence
PΓLn(E) also acts on the zero sets of the homogeneous polynomi-
als.

Let S ⊆ P 2(E) such that S is a point or line in P 2(E). So S = π(W )
where W ⊆ E3 of dimension 1 or 2, where π is a the residue class map. Define
a mapping

φ : P 2(E)→ P 2(E)
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such that
φ(S) = π(π−1S)⊥ = π(W⊥)

Theorem: Lines and points are dual in the projective plane
P 2(E).
The dot product is a non-degenerate symmetric bilinear form and so

dimW⊥ = dimE3 − dimW = 3− dimW

If S is a point, W has dimension 1 and thus W⊥ has dimension 2 and π(W⊥

is a line. Similarly, if S is a line, π(W⊥) is a point. So, φ maps lines to points
and points to lines. It is easy to verify that φ also preserves incidence, and
is bijective, with φ−1 = φ

Corollary: If |E| = q then P 2(E) has q2 + q + 1 lines, and q+1 lines in
P 2(F ) contain a given point. Since φ is a bijection, the number of lines is
equal to the number of points, viz. q2 + q + 1.

Lemma: If l: aX + bY + cZ =0, where a, b, c are field elements
not all equal to 0, then the solution set of l and αl: αa + αb + αc = 0
for α ∈ E× are identical. The projection of this set is a line in P 2(E).

In fact, we may define:

[a : b : c]⊥ = {[X : Y : Z] ∈ P 2(E)|aX + bY + zZ = 0}

and
{[X : Y : Z] ∈ P 2(E)|aX + bY + zZ = 0} = [a : b : c]

So, lines in P 2(E) are the projections of 2-dimensional subspaces of E3 which
are defines by equations of the form a1X + a2Y + a3Z = 0, such that ai ∈ E
are not all 0.

Theorem: Two distinct lines in P 2(E) intersect in exactly one
point.

Theorem: Lines in P 2(E) have 3 forms:

1. {[x : mx + b: 1] — m, b ∈ E} ∪ {[1:m:0] with m, b fixed as x varies}
# when a2 6= 0
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2. {[b : y: 1] — b ∈ E} ∪ {[0:1:0] with b fixed as x varies} # when a2 =
0, a1 6= 0 (this includes the line at infinity, [X:Y:0])

3. {[1 : m: 0] — m ∈ E} ∪ {[0:1:0] with m fixed as x varies} # when a2
= 0, a1 =0

For example, let E = F4

|P 2(F4)| = 42 + 4 + 1

Each projective line in P 2(F4) has 4 + 1 = 5 points. By the previous theorem,
we have 3 types of lines in P 2(F4). Lines of the form y = mx + b have 4
choices for m and 4 choices for b and are thus 16 in number. Lines of the
form x = b have 4 choices for b, and thus 4 lines. There is one line at infinity,
L∞. These account for the 21 lines. Each line of type 1 and 2 has 4 affine
points, plus one point at infinty, while the line at infinity has 4 affine slopes,
plus the slope ∞.
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Hexads in P 2(F4)

A k- arc is a set of k points in P 2(Fq) such that no 3 points are collinear.
If k ¡3, this is vacuously true for any set of k points.
If a point is removed from a k-arc, the remaining points form a (k-1)-arc.
For k=2,3,4,5,6, k-arcs are respectively called duads, triads, tetrads, pentads
and hexads.

Lemma: If {vi} ⊆ F 3
q for 1 ≤ i ≤ k, then the following are equivalent:

1. For any ai 6= 0 in Fq, ever 3-element subset of {a1v1, . . . akvk} is linearly
independent.

2. Every 3-element subset of {v1, . . . vk } is linearly independent.

3. {[v1], . . ., [vk]} is a k-arc.

For 1 ⇒ 2, put ai = 1 For 2 ⇒ 3, choose {v1, . . . vk } as a representative
subset. So vi 6= 0 for i = 1, 2, 3 and [v1], [v2], [v3] are the corresponding points
in P 2(Fq). Now any two of these vectors must form an independent set, and
hence their span is a 2-dimensional subspace of F 3

q , corresponding to a line
in P 2(Fq). Because the third vector is not in this subspace, [v1], [v2], [v3] are
not collinear. For 3 ⇒ 1, let [v1], [v2], [v3] be elements of a k-arc, and take ai
6= 0 for i =1, 2, 3. Because they are not collinear, any one of them is not on
the line defined by the other two, and so [v3] is not on the line defined by [v1]
and [v2] (v1 and v2 cannot be linearly dependent, for then [v1] = [v2]) This
line corresponds to span {a1v1, a2v2}. Thus a3v3 is not in span{a1v1, a2v2}.
So, span{a1v1, a2v2, a3v3} is a three-dimensional subspace of F 2

q and is hence
the set {a1v1, a2v2, a3v3} is linearly independent.

Lemma: The group PGL3(Fq) acts transitively on ordered triads
in P 2(Fq).
Proof:

β = {e1, e2, e3}
is a basis and so

([e1], [e2], [e3])

is an ordered triad. Let ([v1], [v2], [v3]) be another ordered triad. The matrix

S =

 −v1−−v2−
−v3−

 maps ei to vi, i= 1, 2, 3

Because {v1, v2, v3} is independent, S is invertible and thus is in an equiv-
alence class [S] in PGL3(Fq) mapping {e1, e2, e3} to ([v1], [v2], [v3]). This

22



suffices for the action to be transitive.

Lemma: TFAE:

1. {([v1], [v2], [v3], [x]) }

2. {v1, v2 v3 } is an independent set, and x = a1v1 +a2v2 +a3v3 such that
no ai is 0.

Theorem: PGL3(Fq) acts sharply transitively on ordered tetrads in
P 2(Fq).
Let q1 = {([v1], [v2], [v3], [v4]) } q2 = {([w1], [w2], [w3], [w4]) } be ordered
tetrads in P 2(Fq). By the lemma,

v4 = a1v4 + a2v2 + a3v3

w4 = b1w4 + b2w2 + b3w3

such that no ai or bi is 0. Because {v1, v2 v3 } and {w1, w2 w3 } are
independent, so are {a1v1, a2v2 a3v3 } and {a1w1, a2w2 a3w3 }. There exists
a T ∈ GL3(Fq) such that

(aivi)T = biwi

for i =1, 2, 3. (follows from the transitivity of the action on triads). Now
{a1v1, a2v2 a3v3 } and {a1w1, a2w2 a3w3 } are bases for F 3

q . Take the matrix −b1w1−
−b2w2−
−b3w3−


(the ith row is biwi written in the basis {a1v1, a2v2 a3v3 }). Because these
are independent, S is invertible. Now, we have v4T = w4 (by the linearity
of T and its action on the bases). Hence T sends the set {a1v1, a2v2 a3v3,
v4 } point-wise to {b1w1, b2w2 b3w3, w4 } Thus [vi]T = [viT ] = [wi] and
the group PGL3(Fq) acts transitively on ordered tetrads in P 2(Fq). Tak-
ing q0 = {[100], [010], [001], [111]} as an ordered tetrad, one find that the
pointwise stabilizer is trivial in PGL3(Fq). Hence the action is sharp and
transitive.

Lemma: If G acts sharply k-transitively on X, where |X| = n
and k ≤ n, then G acts faithfully on X.

Thus PGL3(Fq) acts faithfully, sharply and transitively on ordered tetrads
in P 2(Fq). Hence the number of ordered tetrads in P 2(F4) is equal to
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|PGL3(F4)| = 60480, and the number of unordered tetrads is 60480/4! =
2520.

From now onwards, the projective plane used is P 2(F4). The convention
used to represent points in the projective plane is to maximize the number
of 1’s and then the number of ω’s.

Lemma: Let
q0 = {[100], [010], [001], [111]}

be a tetrad in P 2(F4). Then:

• q0 is contained in two pentads in P 2(F4).

• q0 is contained in one hexad in P 2(F4), h0 = q0 ∪ {[ωω1], [ω$1]}

As a corollary, every tetrad and pentad is contained in only one hexad in
P 2(F4).

Lemma: PGL3(F4) acts transitively on ordered hexads in P 2(F4).
Proof: Let h1 and h2 be distinct hexads in P 2(F4). Delete two points from
them to get two tetrads. Now theres exists an element of PGL3(F4) that
takes one tetrad to the other, Each of these tetrads is in a unique hexad.
Therefore PGL3(F4) takes a hexad in P 2(F4) to another.

Number of ordered tetrads that can be formed within a hexad =
6C44! = 360. Because each tetrad lies in a unique hexad, and there
are 60480 ordered tetrads,we have 60480/360 = 168 total hexads.

Theorem: Under the action of PSL3(F4), P
2(F4) has 3 orbits of

hexads, all of size 56. Every hexad contains 360 pentads, and G=PGL3(F4)
acts sharply transitively on the set of tetrads in P 2(F4). Hence there are 360
elements in G that send a hexad h setwise to itself, and these form a sub-
group H = StabG(h) of order 360 = |A6|. H acts 4-transitively on the 6
points of h, just as A6 does on {1, 2, 3, 4, 5, 6}, and hence StabG(h) ' A6.
Thus H is simple. Now N = PSL3(F4) is a normal subgroup of G. So by the
second isomorphism theorem, H ∩N is a normal subgroup of H. So H ∪N
= 1 or H. But if H ∪N = 1, the orbit size of h turns out to be 20160 ¿ 168,
a contradiction to the fact that there are only 168 hexads. Thus H ∪N = H
and H lies in N, and the orbit has size 20160/360 = 56.
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Using the concept of ”hexagrams”, it may be proven that Hexads are
in the same PSL3(F4) iff they intersect evenly.

Theorem: Hexads intersecting evenly is an equivalence relation whose
equivalence classes are PSL3(F4)-orbits. Thus hexads are in the same PSL3(F4)-
orbit iff they share an even number of elements.

As a corollary, hexads in different PSL3(F4)-orbits intersect in 1 or 3 ,
because if they intersect in 5 points, they’d contain the same pentad. But
each pentad lies in a unique hexad.

Theorem: The action of G = PΓL3(F4) on P 2(F4) preserves the N-orbits
of hexads. (where N = PSL3(F4), G = PΓL3(F4))

Let h1, h2 be in the same N-orbit and let T ∈ G. There must exist A in
SL3(F4) such that h1A = h2. SL3(F4) is a normal subgroup ΓL3(F4). Thus
A’ = T−1AT ∈ SL3(F4). We have h2T = (h1A)T = h1(AT ) = h1(TA

′) =
(h1T )A′. By definition, h1T and h2T are in the same N-orbit. Thus T ∈ G
preserves the N-orbits of hexads.
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Binary Linear Codes

A binary linear code is a k-dimensional subspace C of F n
2 and it is referred

to as an (n,k)-code. The vectors of C are called code words.

Self-Orthogonal and Self-dual Codes
If C is an (n,k)-code, then C⊥ is an (n, n-k)-code.
C⊥⊥ = C

C is called self-orthogonal if C⊥ ⊆ C, and this also means that k ≤ n - k
⇒ k ≤ n/2.

Following are a few results on (n,k)-codes that are rather straightforward
to prove.

# If C is self-orthogonal, then C is even (has even weight).
# A binary code is doubly even if all its code words have weight divisible by
4.
# Let C be a binary (n,k)-code. If the vectors of a generating set S have
weight divisible by 4 and are pairwise orthogonal, then C is doubly even.
# An (n,k)-code C is called self-dual if C = C⊥.
# If C is a self-dual (n,k)-code then n is even, 1 ∈ C and the weight distri-
bution of C is symmetric.
# Let C be a binary (n, k)-code. An automorphism of C is an element of Sn
that sends code words to code words:

Aut(C) = {π ∈ Sn|cπ ∈ C∀c ∈ C}
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The Large Mathieu Groups

Action of PΓL3(F4) on PSL3(F4): Orbits of Hexads

Let G = PΓL3(F4) and N = PSL3(F4)
Let

h0 = {[100], [010], [001], [111], [ω$1], [$ω1]}
be a representative hexad for an N-orbit (designated orbit I); let

A =

 ω 0 0
0 1 0
0 0 1


Then,

h′0 = h0A = {[100], [010], [001], [ω11], [1ω1], [$$1]}
h′′0 = h0A

2 = {[100], [010], [001], [$11], [1$1], [ωω1]}
are representative hexads of the other two orbits (II and III).

Theorem: G acts on hexad orbits I, I, III.
Proof: The action of G on P 2(F4) preserves the N-orbits, thus T ∈ sends
hexad orbits to hexad orbits and I ∈ G sends every orbit to itself. If x ∈
{I, II, III} and T1, T2 ∈ G, then (xT1)T2 = x(T1T2). Since x is a subset of
P 2(F4), the action of G on {I, II, III} is the same as the one defined by the
action on P 2(F4).

Lemma: N is a subgroup of the kernel of the action of G on hexad orbits
I, II, III, inducing an action G/N on the points I, II, III.
I, II, III are N-orbits, and T ∈ N sends each of I, II, III to itself. Now the
kernel of the action is the subgroup of G fixing I, II, III pointwise and so
N is contained in the kernel. Because N is in the kernel, and N is a normal
subgroup of G, the induced action of G/N is well-defined.

In fact, one finds that |G/N | = 6, and on examining the elements and
their action on {I. II. III}, G/N ' S3, and the kernel of the action of G/N
on this set is trivial, which means that the kernel of the action of G must be N.

The Golay Code C24

Let X = P 2(F4) ∪ {I, II, III} (X contains 24 elements).
To each of these 24 elements, we assign a particular number between 1 and
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24, with no repetitions. Then a subset of these 24 elements can be associated
to a unique vector in F 24

2 . Suppose the elements of the subset correspond
to the numbers i, j, k, . . ., m, then the subset containing these points corre-
sponds to the vector ei + ej + . . .+ em.

If l is a line in X = P 2(F4), then l ∪ {I, II, III} is called a line octad.
If h is a hexad in X = P 2(F4), then h ∪ {II, III}, if h ∈ I / h ∪ {I, III}, if
h ∈ II / h ∪ {I, II}, if h ∈ III, is called a line octad.

We define the Golay code, C24 ∈ F 24
2 to be the code generated

by the 21 line octads and the 168 oval octads.

Theorem: The line octads obtained from the from the following lines of
P (F4):

{[001]⊥, [100]⊥, [101]⊥, [10ω]⊥, [ω01]⊥, [010]⊥, [011]⊥, [01ω]⊥, [110]⊥, [ω10]⊥}

form a linearly independent set of 10 vectors. If the oval octads obtained
from the following hexads

h0 = {[100], [010], [001], [111], [ω$1], [$ω1]}

and
h′0 = {[100], [010], [001], [ω11], [1ω1], [$$1]}

are added, they form a linearly independent set of 12 vectors. (This can be
verified directly using the map of the oval octads and line octads to F 24

2 .

Hence dim(C24) ≥ 12.
Theorem: The Golay code is a doubly even code.

We know that in characteristic two, if we denote by vi ∩ vj the vector that
has 1 in every co-ordinate where both vi and vj have 1 and 0 in every other
co-ordinate, then vi·vj = 0 iff |vi ∩ vj| is even. We know also that two lines
intersect in exactly one point. So two line octads must intersect in 1 + 3 =
4 points. Also, two hexads in the same orbit intersect in 2 or 4 points, and
in different orbits in 1 or 3 points. So the intersection of two oval octads is
always in 2+2=4 or 4+2=6 points if they are in the same orbit, and in 1+1
=2 or 3+1 =4 if they are in different orbits.

Now, the Golay code being doubly even must also be self-orthogonal, and
so dim(C24) ≤ 24/2 = 12. But we have proven that dim(C24) ≥ 12. Hence
dim(C(24)) = 12, and C⊥24 = C24 and C24 is self-dual.
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We define the Mathieu Group, M24 to be the automorphism
group of the Golay code C24.

Theorem: PΓL3(F4) is a subgroup of M24.
It can be verified that PΓL3(F4) maos line octads to line octads and oval
octads to oval octads.

Now, there is a particular co-ordinate transformation π = (12)(34)(9
10)(11 12)(17 19)(18 20)(21 24)(22 23) (where the numbers denote points
in ¶2(F4) and the corresponding vector in F 24

2 to i is ei) that lies in M24 but
not in PΓL3(F4).

Define G24 = ¡PΓL3(F4), π¿.

Theorem: G24 acts 5-transitively on X = P 2(F4)∪{I, II, III}, and
hence so does M24

We know that PSL4(F4) is a normal subgroup of PΓL3(F4) and acts 2-
transitively on P 2(F4) and fixes I, II, III pointwise. Also, PΓL3(F4)/PSL3(F4)
is isomorphic to S3. It suffices to prove that for a, b, c, x, y in X, T in G24,
it is possible for T to map a to I, b to II, c to III, x to [010] and y to [100].
Then by 2-transitivity, any 5-tuple and me mapped to this 5-tuple.

Corollary: C24 has minimum weight d=8 with no code word of weight
4.
Corollary: Any five points of X lie in exactly one octad of C24. Corollary:
The octads of C24 form a Steiner system S(5, 8, 24).

Theorem: M24 = Aut(S(5, 8, 24))

Theorem: In G24 and M24, the set-wise stabilizer of 3 points is isomor-
phic to PΓL3(F4) and the point-wise stabilizer to PSL3(F4).
This follows from the fact that 5-transitivity implies 3-transitivity.

Theorem: G24 and M24 are both groups of order 244823040. This is
shown using a theorem on k-transitivity, |G|=n(n-1). . .(n-k+1)|Stab(x1, . . . , xk)|.
Hence they are equal.

If one defines M24−i = Stab(x1, . . . , xi) where 0 ≤ i ≤ 4. Because
M24 is 5-transitive, the choice of xi does not matter.

Theorem: M24−i is a (5-i)-transitive group on (24-i) points for 0
≤ i ≤ 4
Follows from the fact that it is a stabilizer on i points.

Theorem: M22, M23, ∈ M24 are simple groups. Now, M21 is a 3-point
stabilizer and is hence isomorphic to PSL3(F4), and thus has to be simple
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as per previous result. A few other simple lemmas on multiple transitivity
prove that M22, M23, ∈ M24 are simple groups.

Theorem: M24 is a simple group.
Proof: Because M23 is a subgroup of M24 and M23 is a stabilizer of one
of the 24 points acted on by M24. Because M23 is simple, and M24 acts 5-
transitively on these points, by a lemma on multiple transitively, M24 must
be simple.
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