Introduction	Number of k-Normal Elements	Existence of k-Normal Elements	Normal Elements with Large Multiplicative Orde

An introduction to k-normal elements over finite fields

Simran Tinani

Graduate Students Seminar, IISER Mohali. 10 March 2021

Simran Tinani

An introduction to k-normal elements over finite fields

Introduction	Number of k-Normal Elements	Existence of k-Normal Elements	Normal Elements with Large Multiplicative Orde

Overview

- 2 Number of k-Normal Elements
- 3 Existence of k-Normal Elements
- 4 Normal Elements with Large Multiplicative Order

 Introduction
 Number of k-Normal Elements
 Existence of k-Normal Elements
 Normal Elements with Large Multiplicative Order

 •0000
 0000
 00000
 00

Introduction

Let $m \ge 1$ and q be a power of a prime p. Denote by \mathbb{F}_q the finite field of order q. The extension field \mathbb{F}_{q^m} then forms a vector space of dimension m over \mathbb{F}_q , and $\mathbb{F}_{q^m}^*$ is a cyclic group, whose generators are called primitive elements.

Definition (Normal Element)

An element $\alpha \in \mathbb{F}_{q^m}$ is called a normal element over \mathbb{F}_q if all its Galois conjugates, i.e. the *m* elements $\{\alpha, \alpha^q, \ldots, \alpha^{q^{m-1}}\}$, form a basis of \mathbb{F}_{q^m} as a vector space over \mathbb{F}_q . A basis of this form is called a normal basis.

Theorem 1 (Primitive Normal Basis Theorem ([Lenstra and Schoof, 1987]))

Every finite field extension possesses an element which is simultaneously normal and primitive.

Introduction	Number of k-Normal Elements	Existence of k-Normal Elements	Normal Elements with Large Multiplicative Orde
00000			

Introduction

Definition (k-normal element)

An element $\alpha \in \mathbb{F}_{q^m}$ is called k-normal if

$$\dim_{\mathbb{F}_q}\left(\operatorname{span}_{\mathbb{F}_q}\left\{\alpha,\alpha^q,\ldots,\alpha^{q^{m-1}}\right\}\right)=m-k.$$

An element α is 0-normal if and only if it is normal. The only *m*-normal element in \mathbb{F}_{q^m} is 0.

Definition (Polynomial Euler-Phi)

Let $f \in \mathbb{F}_q[x]$, deg f = m > 0. Then $\Phi_q(f)$ is defined as the order of the group $\left(\frac{\mathbb{F}_q[x]}{\langle f \rangle}\right)^{\times}$. In other words, $\Phi_q(f)$ gives the number of polynomials with degree < m that are co-prime to f.

(人間) くち くち くち

э

Introduction

- ▶ For arbitrary m, and k, 0 < k < m − 1, no general rule for the existence of k-normal elements or for their number n_k, when they exist, is known. Many special cases have been dealt with.
- Relation to multiplicative structure of the field: given d | q^m - 1, how many k-normal elements with order d are in F_{q^m}? One is interested in establishing analogous results to the Primitive Normal Basis theorem [Lenstra and Schoof, 1987].
- Existence of 1-normal primitive elements was posed with a partial solution in [Huczynska et al., 2013] and was fully answered in [Reis and Thomson, 2018].

 Introduction
 Number of k-Normal Elements
 Existence of k-Normal Elements
 Normal Elements with Large Multiplicative Order

 00000
 0000
 000000
 000
 000
 000

Background Definitions and Results

Consider the structure of \mathbb{F}_{q^m} as an $\mathbb{F}_q[x]$ -module under the action

$$\left(\sum_{i=0}^{n}a_{i}x^{i}\right)\cdot\alpha=\sum_{i=0}^{n}a_{i}\alpha^{q^{i}},\ \alpha\in\mathbb{F}_{q^{m}}.$$

For any $\alpha \in \mathbb{F}_{q^m}$ let $\operatorname{Ann}(\alpha)$ denote the annihilator ideal with respect to this action. Note that we always have $(x^m - 1) \cdot \alpha = x^{q^m} - x = 0$, so $x^m - 1 \in \operatorname{Ann}(\alpha)$

Definition (Ord function)

Define the function $\operatorname{Ord} : \mathbb{F}_{q^m} \to \mathbb{F}_q[x]$ as follows. For any $\alpha \in \mathbb{F}_{q^m}$, $\operatorname{Ord}(\alpha)$ is the unique monic polynomial such that

Ann
$$(\alpha) = \langle \operatorname{Ord}(\alpha) \rangle$$
 in $\mathbb{F}_q[x]$.

Simran Tinani

-∢ ≣ ▶

 Introduction
 Number of k-Normal Elements
 Existence of k-Normal Elements
 Normal Elements with Large Multiplicative Order

 0000
 0000
 000000
 00

Background Definitions and Results

Theorem 2 ([Huczynska et al., 2013, Theorem 3.2])

Let $\alpha \in \mathbb{F}_{q^m}$ and $g_{\alpha}(x) := \sum_{i=0}^{m-1} \alpha^{q^i} \cdot x^{m-1-i} \in \mathbb{F}_{q^m}[x]$. Then the following conditions are equivalent:

α is k-normal.

•
$$gcd(x^m - 1, g_{\alpha}(x))$$
 over \mathbb{F}_{q^m} has degree k.

•
$$\deg(\operatorname{Ord}(\alpha)) = m - k$$
.

The matrix

$$A_{\alpha} := \begin{bmatrix} \alpha & \alpha^{q} & \alpha^{q^{2}} & \cdots & \alpha^{q^{m-1}} \\ \alpha^{q^{m-1}} & \alpha & \alpha^{q} & \cdots & \alpha^{q^{m-2}} \\ \vdots & \vdots & \cdots & \vdots & \vdots \\ \alpha^{q} & \alpha^{q^{2}} & \alpha^{q^{3}} & \cdots & \alpha \end{bmatrix}$$
 has rank $m - k$.

< ∃⇒

Number of k-Normal Elements

Theorem 3 ([Huczynska et al., 2013, Theorem 3.5])

The number of k-normal elements of \mathbb{F}_{q^m} over \mathbb{F}_q equals 0 if there is no $h \in \mathbb{F}_q[x]$ of degree m - k dividing $x^m - 1$; otherwise it is given by

 $\sum_{\substack{h|x^m-1\\ \deg(h)=m-k}} \Phi_q(h),$

where divisors are monic and polynomial division is over \mathbb{F}_q .

x^m − 1 factorizes over F_q into the product of cyclotomic polynomials Q_d(x) with degrees dividing m. For p ∤ d each irreducible factor of Q_d(x) has degree φ(d)/r, where r is the multiplicative order of d mod q [Lidl and Niederreiter, 1997].

No known closed formula for r, so there is no closed-form complete factorization of x^m − 1 over F_q.

- - ► For k = 0, the formula in Theorem 3 yields the well-known value $\Phi_q(m)$ for the number of normal elements over in \mathbb{F}_{q^m} [Lidl and Niederreiter, 1997].
 - Since x^m − 1 always has the divisor x − 1 of degree 1 and hence also a divisor of degree m − 1 (and since Φ_q(f(x)) ≠ 0 for any nonzero polynomial f(x)), we always have 1-normal and (m − 1)-normal elements in F_{q^m}.
 - ► The only values of k for which k-normal elements are guaranteed to exist for every pair (q, m) are 0, 1 and m - 1 [Huczynska et al., 2013].
 - If q is a primitive root modulo m, ^{xm−1}/_{x−1} is irreducible and so for 1 < k < m−1, k-normal elements do not exist [Reis and Thomson, 2018].</p>

 Introduction
 Number of k-Normal Elements
 Existence of k-Normal Elements
 Normal Elements with Large Multiplicative Orde

 00000
 00000
 000000
 00

Main Theorem on Cardinality

Theorem 4

[Tinani and Rosenthal, 2021] Let n_k denote the number of k-normal elements in \mathbb{F}_{q^m} . If $n_k > 0$, then

$$n_k \geq rac{\Phi_q(x^m-1)}{q^k}.$$

Proof (Sketch).

One may prove that there is a group action of $\left(\frac{\mathbb{K}[x]}{(x^m-1)}\right)^{\times}$ on the set S_k of all *k*-normal elements. An upper bound on $|\operatorname{Stab}(\alpha)|$ can be found using Theorem 2. The rest is an application of Orbit-Stabilizer Theorem.

< ∃⇒

Introduction	Number of k-Normal Elements	Existence of k-Normal Elements	Normal Elements with Large Multiplicative Orde
	0000		

- The proof follows the approach in [Hyde, 2018], which handles the case k = 0 and obtains the exact number of normal elements using the freeness and transitivity of the group action.
- For k > 0 it is clear that for every k-normal α, there exists u ∈ K[G] such that u · α = α. However, it is unclear whether such a u always lies in K[G][×] and if the action is transitive.
- If a k-normal element α exists, then the lower bound is, in fact, for the number of k-normal elements lying in a single orbit, and therefore in span_{𝔅a} {α, α^q, α^{q²},..., α^{qm-1}}.

Existence of *k*-Normal Elements

- ▶ There exist values of q, m and k such that no k-normal element over \mathbb{F}_q exists in \mathbb{F}_{q^m} . E.g. q = 2, m = 10, k = 3, 7.
- Some results on the number of *k*-normal elements automatically imply their existence, E.g. [Sayg₁ et al., 2019] for *m* a power of the characteristic.
- Some other results on the numbers are in implicit form, asymptotic (E.g. [Huczynska et al., 2013]), or assume the existence of at least one k-normal element (E.g. this paper).

Existence of *k*-Normal Elements

Theorem 5 ([Reis, 2019])

Let q be a power of a prime p and let $m \ge 2$ be a positive integer such that every prime divisor of m divides $p \cdot (q-1)$. Then k-normal elements exist for all k = 0, 1, 2, ..., m.

- Concrete, significant extension of the case m = p^r, but prime factorization of m is still restricted to a particular form.
- ➤ Our theorem shows that under weaker constraints on m (m must have a "sufficiently large" common divisor with q^m − 1), k-normal elements exist for k above a minimum lower bound.
- ▶ When $p \nmid m$, our theorem is a generalization of this result.

<u>A Number Theoretic Prerequisite</u>

Proposition 1

[Tinani and Rosenthal, 2021] Let a and m be arbitrary natural numbers and suppose that $m \nmid a^m - 1$. Then m has a prime factor that does not divide $a^m - 1$.

- ▶ The proof proceeds by induction on the largest exponent b of a prime *p* dividing *m*.
- The proof was inspired by the proof of a similar result in [Lüneburg, 2012, Theorem 6.3].

Main Theorem on Existence

Theorem 6 (Sufficient Conditions for Existence)

[Tinani and Rosenthal, 2021]

- ▶ If $m \mid (q^m 1)$, then k-normal elements exist in \mathbb{F}_{q^m} for every integer k in the interval $0 \leq k \leq m 1$.
- ▶ If $m \nmid q^m 1$, let $d = \gcd(q^m 1, m)$. Assume that $\sqrt{m} < d$. Let *b* denote the largest prime divisor of *m* that is a non-divisor of $q^m 1$. Then, for $k \ge m d b + 1$, *k*-normal elements exist in \mathbb{F}_{q^m} . In particular, if *m* is prime and $m \le d + b 1$, then *k*-normal elements exist for every *k* in the interval $0 \le k \le m 1$.

Note that if $p \nmid m$ and the hypothesis of Theorem 5 holds, i.e. every prime factor of m divides $p \cdot (q-1)$ then Proposition 1 says that we are in the case $m \mid q^m - 1$.

Proof (Sketch).

- ▶ \mathbb{F}_{q^m} contains *k*-normal elements $\iff x^m 1$ has a divisor of degree m k.
- ▶ If $m \mid q^m 1$, $x^m 1$ splits into linear factors over \mathbb{F}_q , and m k linear factors combine to give a factor of degree m k.

▶ If
$$m \nmid q^m - 1$$
, write

$$x^m - 1 = (x - \alpha_1) \cdot (x - \alpha_2) \cdot \ldots \cdot (x - \alpha_d) \cdot \prod_{\substack{t \mid m \\ t \nmid q^m - 1}} Q_t(x),$$

Proposition 1 says that we have a prime b such that Q_b(x) figures in the latter product. A combinatoric argument then shows that if no k-normal element exists, then

$$k < m - d - \phi(b) = m - d - b + 1.$$

Introduction	Number of k-Normal Elements	Existence of k-Normal Elements	Normal Elements with Large Multiplicative Orde
		0000000	

Examples

Example

For q = 5, m = 6, we have

$$q^m - 1 = 15624 = 0 \mod 6$$

So, Theorem 6 shows that k-normal elements exist in \mathbb{F}_{q^m} for every $k \in \{0, 1, \ldots, m\}$. Here, Theorem 5 is not applicable because the prime 3 divides m but not $p \cdot (q-1) = 20$.

Example

For q = 8, m = 6, we have

$$q^m - 1 = 262143,$$

and so

$$d=\gcd(q^m-1,\ m)=3>\sqrt{6}.$$

The largest prime *b* that divides 6 and not 262143 is clearly 2. So, Theorem 6 shows that *k*-normal elements exist in \mathbb{F}_{q^m} for every $k \ge m - d - b + 1$, i.e. for every $k \ge 2$. Since we know that 0- and 1-normal elements always exist in \mathbb{F}_{q^m} , we conclude that in this case *k*-normal elements exist for every $k \in \{0, 1, \ldots, m\}$. Here as well, Theorem 5 is not applicable because the prime 3 divides *m* but not $p \cdot (q - 1) = 14$.

(4) E > (4) E >

< 47 ▶

 Introduction
 Number of k-Normal Elements
 Existence of k-Normal Elements
 Normal Elements with Large Multiplicative Order

 00000
 0000
 00000
 0000
 0000
 00000

Normal Elements with Large Multiplicative Order

- So far, we have looked at the "additive" structure of 𝔽_{q^m} as an 𝔽_q-vector space and as an 𝔽_q[x]-module.
- ► It is also of interest to study the relation between these additive structures and the multiplicative structure of F^{*}_a.

Theorem 7 (Primitive Normal Basis Theorem, [Lenstra and Schoof, 1987])

For every prime power q > 1 and every positive integer m there exists an element $a \in \mathbb{F}_{q^m}^*$, with $Ord(a) = x^m - 1$ and $ord(a) = q^m - 1$.

► One may wish to extend this and ask what pairs of multiplicative and additive orders occur together in elements of F_{q^m}.
 Introduction
 Number of k-Normal Elements
 Existence of k-Normal Elements
 Normal Elements with Large Multiplicative Order

 00000
 0000
 00000
 00

Normal Elements with Large Multiplicative Order

Theorem 8

Suppose that (m, q - 1) = 1. Then \mathbb{F}_{q^m} has a normal element with multiplicative order $\frac{q^m - 1}{q - 1}$.

Idea of Proof.

We showed that the techniques in the proof of the Primitive Normal Basis Theorem in [Lenstra and Schoof, 1987] can be adapted and extended to this case.
 Introduction
 Number of k-Normal Elements
 Existence of k-Normal Elements
 Normal Elements with Large Multiplicative Order

 00000
 0000
 000
 00

Further Research Problems

Given a *k*-normal element α , does there exist another *k*-normal element outside span_{**F**_q} { $\alpha, \alpha^{q}, \alpha^{q^{2}}, \ldots, \alpha^{q^{m-1}}$ }?

Given a k-normal element α , which of the subsets of $\{\alpha, \alpha^q, \alpha^{q^2}, \ldots, \alpha^{q^{m-1}}\}$ with size m - k or smaller, apart from $\{\alpha, \alpha^q, \alpha^{q^2}, \ldots, \alpha^{q^{m-k-1}}\}$ are linearly independent?

Under what circumstances is the group action of $\mathbb{K}[G]^{\times}$ on S_k free? Under what circumstances is it transitive?

Determine the existence of high-order k-normal elements $\alpha \in \mathbb{F}_{q^m}$ over \mathbb{F}_q , where high order means $ord(\alpha) = N$, with N a large positive divisor of $q^m - 1$. [Huczynska et al., 2013, Problem 6.4]

Introduction	Number of k-Normal Elements	Existence of <i>k</i> -Normal Elements	Normal Elements with Large Multiplicative Orde

Thank you!

Simran Tinani

An introduction to k-normal elements over finite fields

< ∃ →

æ

Number of k-Normal Elements Existence of k-Normal Elements Normal Elements with Large Multiplicative Order

References I

Huczynska, S., Mullen, G. L., Panario, D., and Thomson, D. (2013).Existence and properties of k-normal elements over finite fields.

Finite Fields Appl., 24:170–183.

```
Hyde, T. (2018).
```

Normal elements in finite fields. arXiv preprint arXiv:1809.02155.

Lenstra, Jr., H. W. and Schoof, R. J. (1987). Primitive normal bases for finite fields. Math. Comp., 48(177):217-231.

Introduction	Number of k-Normal Elements	Existence of k-Normal Elements	Normal Elements with Large Multiplicative Orde

References II

 Lidl, R. and Niederreiter, H. (1997).
 Finite fields, volume 20 of Encyclopedia of Mathematics and its Applications.
 Cambridge University Press, Cambridge, second edition.
 With a foreword by P. M. Cohn.

Lüneburg, H. (2012). Translation Planes. Springer Berlin Heidelberg.

Reis, L. (2019). Existence results on *k*-normal elements over finite fields. *Rev. Mat. Iberoam.*, 35(3):805–822.
 Introduction
 Number of k-Normal Elements
 Existence of k-Normal Elements
 Normal Elements with Large Multiplicative Orde

 00000
 0000
 000000
 000

References III

Reis, L. and Thomson, D. (2018).
 Existence of primitive 1-normal elements in finite fields.
 Finite Fields Appl., 51:238–269.

 Saygı, Z., Tilenbaev, E., and Ürtiş, c. (2019).
 On the number of k-normal elements over finite fields. *Turkish J. Math.*, 43(2):795–812.

 Tinani, S. and Rosenthal, J. (2021).
 Existence and Cardinality of k-normal Elements in Finite Fields.
 Theoretical Computer Science and General Issues. Springer International Publishing.