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1 Objective

Let n denote a positive integer. Throughout, bnc will denote the largest integer function
evaluated at the number n. We define a Euclidean Decomposition of n as a triple (x, y, z)
of non-negative integers satisfying n = x · y+ z, 0 < x, y ≤ n, 0 ≤ z < x. We call the numbers
x, y and z the terms of the decomposition. For fixed 0 < x ≤ n, it is easily verified that
the equation has the unique solution y =

⌊
n
x

⌋
, z = n− x · y.

One may then ask how one finds a Euclidean decomposition (x, y, z) of n with the minimum
sum x+ y + z of its constituent terms. It is easy to see that such a decomposition can always
be found in time O(n

1
2 ), by trying all choices for x between 1 and b

√
nc+ 2. We will show in

this work that there also exists an algorithm with complexity O(n
3
8 ) for this purpose.

2 Preliminaries

Lemma 1.

1. n ≥ b
√
nc2 with equality if and only if n is a perfect square.

2. n ≤ b
√
nc · (b

√
nc+ 2)

Proof.

1. This follows from the fact that b
√
nc ≤

√
n with equality if and only if

√
n is an integer,

i.e. n is a perfect square.

2. Note that b
√
nc >

√
n− 1 by the definition of the floor function. We have⌊√
n
⌋
·
(⌊√

n
⌋

+ 2
)

=
⌊√

n
⌋2

+ 2 ·
⌊√

n
⌋

>
(√
n− 1

)2
+ 2 ·

(√
n− 1

)
=
(
n+ 1− 2 ·

√
n
)

+ 2 ·
√
n− 2

= n− 1

Since b
√
nc · (b

√
nc+ 2) and n are both integers, the above inequality implies that b

√
nc ·

(b
√
nc+ 2) ≥ n, as required.
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Remark 1. Let x · y = n = x′ · y′, with x = b
√
nc − t1, y = b

√
nc + s1, x

′ = b
√
nc − t2, y′ =

b
√
nc+ s2. Then, t1 < t2 ⇐⇒ s1 < s2.

Lemma 2. Let
n = x · y + z, 1 ≤ x ≤ y < n, 0 ≤ z < x (1)

Then, without loss of generality we can write

x =
⌊√

n
⌋
− t > 0, y =

⌊√
n
⌋

+ s > 0, with 0 ≤ t ≤ s (2)

Consequently,
x+ y + z = 2 ·

⌊√
n
⌋

+ (s− t) + z; s ≥ t ≥ 0 (3)

So, x+ y + z ≥ 2 · b
√
nc. Moreover, we have z ≥ t2.

Proof. First note that whenever n = x · y + z, with z < x ≤ y, we have
⌊n
x

⌋
= y. Since the

equation is symmetric in x and y, it is enough to consider the case x < y. For any s ≥ 0, we
have ⌊√

n
⌋
≥
⌊

n

b
√
nc+ s

⌋
≥
⌊√

n
⌋
− s

Thus, we necessarily have x ≤ b
√
nc, or in other words xmust be of the form (b

√
nc − t) , b

√
nc >

t ≥ 0. For any such t,

n

b
√
nc − t

≥ n√
n− t

≥ n

n− t2
·
(√
n+ t

)
=⇒ y =

⌊
n

b
√
nc − t

⌋
≥
⌊√

n
⌋

+ t

Thus, y must be of the form b
√
nc+ s, with s ≥ t ≥ 0. So, x+ y, and thus x+ y+ z, is greater

than or equal to 2 · b
√
nc. Moreover, we have

z = n− (
⌊√

n
⌋
− t)(

⌊√
n
⌋

+ s)

≥ n− (
⌊√

n
⌋
− t)(

⌊√
n
⌋

+ t)

≥ t2
(4)

Proposition 1. For any m ≥ 0, the sequence xr = {(x−r)(x+r+m)}r≥0 is strictly decreasing
in r.

Proof. We have, for r > 0,

xr − xr+1 = (x− r) · (x+ r +m)− (x− r − 1) · (x+ r +m+ 1)

= m+ 1 + 2 · r > 0
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3 Finding the minimum sum decpmposition

3.1 CASE b
√
nc divides n

Theorem 1. Let n ≥ 1, and assume that b
√
nc divides n. The tuple (p, q, r) = (b

√
nc ,

⌊
n

b
√
nc

⌋
, 0)

satisfies
p+ q + r = min ({(x, y, z) | (x, y, z) is a solution of equation (1) })

Proof. We have, using Lemma 1,⌊
n

b
√
nc

⌋
=

n

b
√
nc

=
⌊√

n
⌋

or
⌊√

n
⌋

+ 1

or
⌊√

n
⌋

+ 2

We now examine each sub-case separately.

1. CASE n = b
√
nc2

Here, we have n = b
√
nc2, so n is a perfect square, so

√
n = b

√
nc, z = s = t = 0, and,

by equation (3), the minimum possible sum has value 2 · b
√
nc = 2 ·

√
n. The proof is

complete for this case.

2. CASE n = b
√
nc · (b

√
nc+ 1)

We have, for any t < b
√
nc,

s =
b
√
nc · (b

√
nc+ 1)

b
√
nc − t

−
⌊√

n
⌋

=
⌊√

n
⌋

+ 1 +
b
√
nc+ 1

b
√
nc − t

· t−
⌊√

n
⌋

≥ t+ 1

If t ≥ 1, x+ y + z = 2 b
√
nc+ (s− t) + z ≥ 2 b

√
nc+ (s− t) + t2 ≥ 2 b

√
nc+ 2.

If t = 0, s =

⌊
n

b
√
nc − t

⌋
−b
√
nc = 1 and z = 0, and thus the sum is equal to 2 ·b

√
nc+1.

By (3), p = b
√
nc is as required.

3. CASE n = b
√
nc · (b

√
nc+ 2)

We have, as before, for any t < b
√
nc,
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s =
b
√
nc · (b

√
nc+ 2)

b
√
nc − t

−
⌊√

n
⌋

=
⌊√

n
⌋

+ 2 +
(b
√
nc+ 2)

b
√
nc − t

· t−
⌊√

n
⌋
≥ t+ 2

So, if t ≥ 1, x+ y + z = 2 b
√
nc+ (s− t) + z ≥ b

√
nc+ (s− t) + t2 + s− t ≥ b

√
nc+ 3.

If t = 0, we have s =

⌊
n

b
√
nc − t

⌋
−b
√
nc = 2, and z = 0. Thus, x+ y+ z = 2 · b

√
nc+ 2.

By (3), this is the minimum sum attainable in this case, therefore p = b
√
nc.

3.2 CASE b
√
nc does not divide n

Lemma 3. Suppose that n < b
√
nc · (b

√
nc+ 1). Then there exists 0 ≤ a0 < n

1
4 such that(⌊√

n
⌋
− a0 − 1

)
·
(⌊√

n
⌋

+ a0 + 2
)
≤ n <

(⌊√
n
⌋
− a0

) (⌊√
n
⌋

+ a0 + 1
)

(5)

On the other hand, if n ≥ b
√
nc · (b

√
nc+ 1), there exists 0 ≤ r0 < n

1
4 such that(⌊√

n
⌋
− r0 − 1

)
·
(⌊√

n
⌋

+ r0 + 3
)
≤ n <

(⌊√
n
⌋
− a0

) (⌊√
n
⌋

+ a0 + 2
)

(6)

Proof. First suppose that n < b
√
nc · (b

√
nc+ 1). By setting m = 0 in Proposition 1, we have

a strictly decreasing integer sequence{
Xa =

(⌊√
n
⌋
− a
) (⌊√

n
⌋

+ a+ 1
)}

a≥0

with first (and maximum) term equal to b
√
nc · (b

√
nc+ 1). Also, for a = b

√
nc, Xa = 0. So,

Xb√nc < n < X0. Thus, there exists a0 such that (3) is satisfied. Now, for any such a0,

n <
(⌊√

n
⌋
− a0

)
·
(⌊√

n
⌋

+ a0 + 1
)
<
⌊√

n
⌋2 − a20 +

⌊√
n
⌋
− a0

=⇒ a20 < a20 + a0 <
⌊√

n
⌋
·
(⌊√

n
⌋

+ 1
)
− n <

⌊√
n
⌋
≤
√
n.

Thus, a0 < n
1
4 , as required.

Now suppose that n ≥ b
√
nc · (b

√
nc+ 1). We know, by Lemma 1, that n ≤ b

√
nc · (b

√
nc+ 2).

By setting m = 2 in Proposition 1, we have a strictly decreasing integer sequence

{
Yr =

(⌊√
n
⌋
− r
) (⌊√

n
⌋

+ r + 2
)}

a≥0

with first (and maximum) term equal to

⌊√
n
⌋
·
(⌊√

n
⌋

+ 2
)
.
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Also, for r = b
√
nc, Yr = 0. So, Yb√nc < n < Y0. Thus, there exists r0 such that (6) is satisfied.

Now, for any such r0,

n <
(⌊√

n
⌋
− r0

)
·
(⌊√

n
⌋

+ r0 + 2
)
<
⌊√

n
⌋2 − r20 + 2

⌊√
n
⌋
− 2r0

=⇒ r0
2 < r0

2 + 2r0 <
⌊√

n
⌋
·
(⌊√

n
⌋

+ 1
)
− n+

⌊√
n
⌋

<
⌊√

n
⌋ (

since n >
⌊√

n
⌋
·
(⌊√

n
⌋

+ 1
))
.

Thus, r0 < n
1
4 , as required.

Lemma 4. Suppose that B is an upper bound for the quantity (s− t). Then, we have

t ≤ n
1
4 · (B + 1)1/2

Proof. We have,

s− t =

⌊
n

b
√
nc − t

⌋
−
⌊√

n
⌋
− t > n

b
√
nc − t

−
(⌊√

n
⌋

+ t
)
− 1 =

n− b
√
nc2 + t2

b
√
nc − t

− 1

=⇒ t2

b
√
nc − t

< (s− t) + 1 ≤ B + 1

=⇒ t2 ≤ (B + 1) ·
⌊√

n
⌋
≤
√
n · (B + 1)

=⇒ t ≤ n
1
4 · (B + 1)1/2.

Proposition 2. Suppose that n < b
√
nc · (b

√
nc+ 1) and let a0 be as in Lemma 3, and s and

t be as in (2). Write

x0 =
⌊√

n
⌋

+ a0 + 2, y0 =
⌊√

n
⌋
− a0 − 1, z0 = n− x0 · y0 (7)

x1 =
⌊√

n
⌋
− t, y1 =

⌊√
n
⌋

+ s, z1 = n− x1 · y1 (8)

Then, if x1 + y1 + z1 < x0 + y0 + z0, then t < n
1
4 · (2n

1
4 + 3)1/2.

Proof. First note that we have

z0 = n− x0 · y0 = n−
(⌊√

n
⌋
− a0 − 1

) (⌊√
n
⌋

+ a0 + 2
)

=⇒ z0 <
(⌊√

n
⌋
− a0

) (⌊√
n
⌋

+ a0 + 1
)
−
(⌊√

n
⌋
− a0 − 1

) (⌊√
n
⌋

+ a0 + 2
)

=⇒ z0 <2 · (a0 + 1) (9)

By assumption, x1 + y1 + z1 < x0 + y0 + z0, so

2 ·
⌊√

n
⌋

+ (s− t) + z1 < 2 ·
⌊√

n
⌋

+ 1 + 2 · (a0 + 1)

∴ (s− t) ≤ (s− t) + z1 ≤ 2 · (a0 + 1) (10)
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Also recall from Lemma (3) that we have a0 < n
1
4 . Now, applying the upper bound from

equation (9) to the claim above, we get

t ≤ n
1
4 · (2a0 + 3)1/2 < n

1
4 · (2n

1
4 + 3)1/2.

Proposition 3. Suppose that n ≥ b
√
nc · (b

√
nc+ 1) and let r0 be as in Lemma 3, and s and

t be as in (2). Write

x0 =
⌊√

n
⌋

+ r0 + 3, y0 =
⌊√

n
⌋
− r0 − 1, z0 = n− x0 · y0 (11)

x1 =
⌊√

n
⌋
− t, y1 =

⌊√
n
⌋

+ s, z1 = n− x1 · y1 (12)

Then, if x1 + y1 + z1 < x0 + y0 + z0, then t < n
1
4 · (2n

1
4 + 4)1/2.

Proof. First note that we have

z0 = n− x0 · y0 = n−
(⌊√

n
⌋
− r0

) (⌊√
n
⌋

+ r0 + 2
)

=⇒ z0 <
(⌊√

n
⌋
− r0

) (⌊√
n
⌋

+ r0 + 2
)
−
(⌊√

n
⌋
− r0 − 1

) (⌊√
n
⌋

+ r0 + 3
)

=⇒ z0 <2 · r0 + 3 (13)

By assumption, x1 + y1 + z1 < x0 + y0 + z0, so

2 ·
⌊√

n
⌋

+ (s− t) + z1 < 2 ·
⌊√

n
⌋

+ 1 + 2 · r0 + 3

∴ (s− t) ≤ (s− t) + z1 < 2 · r0 + 4 (14)

Also recall from Lemma 3 that we have r0 < n
1
4 . Now, applying the upper bound from Lemma

4 to the claim above, we get

t ≤ n
1
4 · (2r0 + 4)1/2 < n

1
4 · (2n

1
4 + 4)1/2.

We are now ready to state the algorithm which we show in Theorem 1 to find a Euclidean
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decomposition with minimum sum.

Algorithm 1: Sum Minimization

if n < b
√
nc · (b

√
nc+ 1) then

1 a← 0.
2 while n < (b

√
nc − a) · (b

√
nc+ a+ 1) do

a← a+ 1.

3 α1 ← b
√
nc − a, β1 ← b

√
nc+ a+ 1, γ1 ← n− α1 · β1.

4 T ← n
1
4 · (2a+ 3)1/2.

5 for 1 ≤ t ≤ T do

1. Calculate s =

⌊
n

b
√
nc − t

⌋
− b
√
nc and z := n− (b

√
nc − t) · (b

√
nc+ s).

2. if 2 b
√
nc+ s− t+ z ≤ αt + βt + γt then

αt+1 ← b
√
nc − t, βt+1 ← b

√
nc+ s, γt+1 ← z.

else
αt+1 ← αt, βt+1 ← βt, γt+1 ← γt.

else
r ← 0.

6 while n < (b
√
nc − r) · (b

√
nc+ r + 2) do

r ← r + 1.

7 α1 ← b
√
nc − r, β1 ← b

√
nc+ r + 1, γ1 ← n− α1 · β1.

8 T ← n
1
4 · (2r + 4)1/2.

9 for 1 ≤ t ≤ T do

1. Calculate s =

⌊
n

b
√
nc − t

⌋
− b
√
nc and z := n− (b

√
nc − t) · (b

√
nc+ s).

2. if 2 b
√
nc+ s− t+ z ≤ αt + βt + γt then

αt+1 ← b
√
nc − t, βt+1 ← b

√
nc+ s, γt+1 ← z.

else
αt+1 ← αt, βt+1 ← βt, γt+1 ← γt.

10 Return (p, q, r) := (αT , βT , γT ).

Theorem 2. Algorithm 1 terminates in O(n
3
8 ) steps, and its output (p, q, r) of satisfies

p+ q + r = min ({(x, y, z) | (x, y, z) is a solution of equation (1) })

Proof. First suppose that n < b
√
nc · (b

√
nc + 1). Let (x1, y1, z1) be a solution of Equation

(1) producing the minimum sum and let s and t be as in Equation (8). Also let x0, y0, and
z0 be as in (7). If the minimum possible sum is less than x0 + y0 + z0, then by the proof of

Proposition 2, we have t ≤ n
1
4 · (2a + 3)1/2 if n < b

√
nc · (b

√
nc + 1), where r and a are the

values as in Lemma 3, which are calculated by the algorithm. The algorithm goes through
every such value of t and records each new tuple producing a smaller sum, returning the tuple
giving the smallest sum, which is, by the argument above, the minimum. If the minimum sum
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equals x0 + y0 + z0, then the algorithm by default returns the tuple (x0, y0, z0). An analogous
argument holds for the second part of the algorithm, which runs if n ≥ b

√
nc · (b

√
nc + 1).

Finally, note that the algorithm calculates a in O(n
1
4 ) steps, by Lemma 3, and then performs

T = n
1
4 · (2n

1
4 + 3)1/2 = O(n

3
8 ) more iterations, thus having a total complexity of O(n

3
8 ).
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